Laiyuan Gao (or Lai-Yuan Gao, in Chinese 高来源)
Research interest: differential geometry and geometric analysis
Office: Room 208 of the 21st Century Building
我主要研究几何学,特别是几何分析,就是使用偏微分方程研究微分几何。
近年来主要精力用于学习和研究曲率流。
对几何学感兴趣,想读研究生的同学,可以通过邮件联系,共同学习进步。lygao@jsnu.edu.cn
CV
2011.09 - 2014.06, Tongji University, Ph. D., Majored in Pure Mathematics
2014.07 - 2016.07, Shanghai University, Postdoc
2016.08 - 2020.06, Jiangsu Normal University, Lecturer/Assistant Professor,
2019.10 - 2021.01, UC San Diego, Visiting Scholar
2020.07 - present, Jiangsu Normal University, Associate Professor
Scientific Research
1. Selected Papers
[5] Gao, L. Whitney-Graustein homotopy of locally convex curves via a curvature flow, Math. Res. Lett. 30 (2023), no. 4, 1045–1062.
[4] Gao, L.; Pan, S.; Tsai, D.-Ho On an area-preserving inverse curvature flow of convex closed plane curves, J. Funct. Anal. 280 (2021), no. 8, Paper No. 108931.
[3] Gao, L.; Pan, S.; Shi, Ke A log-type non-local flow of convex curves. Comm. Anal. Geom. 29 (2021), no. 5, 1157–1182.
[2] Gao, L.; Zhang, Y. On Yau's problem of evolving one curve to another: convex case. J. Differential Equations, no. 1, 266 (2019), 179–201.
[1] Gao, L.; Pan, S. Gage's original normalized CSF can also yield the Grayson theorem. Asian J. Math. 20 (2016), no. 4, 785–794.
A list of my papers.txt (up to 2024-10-24)
2. Fundation
2019-2021, NSFC-11801230
2015-2016, CPSF-2015M571537
Teaching
1. Recent Courses
2025.02 - 2025.06, Geometry of Submanifolds (研一), Mathematical Modeling (本科生)
2024.09 - 2025.01, Geometic Analysis (研二), Theory of Curvature Flows (研二)
2. Seminars on Geometry (每周有一整天的讨论)
Year 2024, Hamilton's invention of his Ricci Flow
Year 2025, Singularity analysis of curvature flows (Ricci flow and Mean curvature type flow)
Social Service
1. AMS Reviewer
2. Referee for many journals...
Links to Mathematicians
Chang, Huai-Liang | Chen, Mufa | Cheung, Yitwah | Chow, Bennett |
Leng, Gangsong | Lou, Bendong | Miao, Zhengke | Ni, Lei |
Sun, Zhi-Hong | Tsai, Dong-Ho | Xu, Hongwei | Yau, Shing-Tung |