周倩楠,副教授,中共党员,1992年出生,河南新乡人. 2019年毕业于荷兰Twente大学,获理学博士学位.2020年毕业于西北工业大学,获理学博士学位(双博士学位). 主要研究方向:图论及其应用,主要研究内容为谱半径条件下图的Hamilton性质。
Email:qnzhoumath@163.com.
一. 工作经历
2024.07-至今 江苏师范大学 数学与统计学院 副教授
2020.05-2024.07 江苏师范大学 数学与统计学院 讲师
二.已授课程
高等数学II
三. 获奖和荣誉
7. 江苏省普通高等学校第十八届高等数学竞赛优秀指导教师.
6. 2021年度江苏师范大学优秀工会积极分子;
5. 2021年第二届江苏师范大学立德树人优秀研究生导师团队;
4. 2021年校先进工作者;
3. 2021年江苏省“双创博士”;
2. 2021年江苏师范大学数学与统计学院青年教师授课竞赛三等奖;
1. 2018年博士生国家奖学金;
四.主持项目
3.国家自然科学青年基金项目.
2.江苏省高校自然科学研究面上项目;
1.江苏师范大学科研启动金;
五.发表学术论文
23.Du,Kexin, Lu, Yong, Zhou, Qiannan,The gap between the rank of a complex unit gain graph and its underlying graph. Discrete Appl. Math. 357 (2024), 399-412.
22.Zhou, Qiannan; Broersma,Hajo; Wang, Ligong; Lu, Yong, A note on minimum degree, bipartite holes, and hamiltonian properties. Discuss. Math. Graph Theory. 44 (2024), 717-726.
21.Zhou, Qiannan; Lu, Yong, Relation between the row left rank of a quaternion unit gain graph and the rank of its underlying graph. Electron J Linear Algebra. 39 (2023), 181-198.
20.Lu, Yong; Zhou, Qiannan,On hyper-Zagreb index conditions for hamiltonicity of graphs. Czech. Math. J. 72 (2022), 653-662.
19.Zhou, Qiannan; Broersma,Hajo; Wang, Ligong; Lu, Yong, Sufficient Spectral Radius Conditions for Hamilton Connectivity of k-Connected Graphs. Graphs Combin. 37 (2021), 2467–2485.
18.Zhou, Qiannan; Broersma, Hajo; Wang, Ligong; Lu, Yong On sufficient spectral radius conditions for hamiltonicity. Discrete Appl. Math. 296 (2021), 26–38.
17.Lu, Yong; Zhou, Qiannan On sufficient topological indices conditions for properties of graphs. J. Comb. Optim. 41 (2021), no. 2, 487–503.
16.Zhou, Qiannan; Wang, Ligong; Lu, Yong Some sufficient conditions for some graph properties. Ars Combin. 153 (2020), 161–175.
15.Zhou, Qiannan; Broersma, Hajo; Wang, Ligong; Lu, Yong On sufficient spectral radius conditions for hamiltonicity of
14.Zhou, Qiannan; Wang, Ligong; Lu, Yong Sufficient conditions for Hamilton-connected graphs in terms of (signless Laplacian) spectral radius. Linear Algebra Appl. 594 (2020), 205–225.
13.Zhou, Qiannan; Wang, Ligong; Lu, Yong Signless Laplacian spectral conditions for Hamilton-connected graphs with large minimum degree. Linear Algebra Appl. 592 (2020), 48–64.
12.Zhou, Qiannan; Wang, Ligong; Lu, Yong Wiener-type invariants and Hamiltonian properties of graphs. Filomat. 33 (2019), no. 13, 4045–4058.
11.Lu, Yong; Wang, Ligong; Zhou, Qiannan The rank of a complex unit gain graph in terms of the rank of its underlying graph. J. Comb. Optim. 38 (2019), no. 2, 570–588.
10.Lu, Yong; Wang, Ligong; Zhou, Qiannan Skew-rank of an oriented graph in terms of the rank and dimension of cycle space of its underlying graph. Filomat. 32 (2018), no. 4, 1303–1312.
9.Zhou, Qiannan; Wang, Ligong; Lu, Yong Wiener index and Harary index on Hamilton-connected graphs with large minimum degree. Discrete Appl. Math. 247 (2018), 180–185.
8.Zhou, Qiannan; Wang, Ligong; Lu, Yong Some sufficient conditions on Hamiltonian and traceable graphs. Adv. Math. (China) 47 (2018), no. 1, 31–40.
7.Zhou, Qiannan; Wang, Ligong; Lu, Yong Wiener-type invariants on graph properties. Filomat. 32 (2018), no. 2, 489–502.
6.Zhou, Qiannan; Wang, Ligong; Lu, Yong Some sufficient conditions on
5.Lu, Yong; Wang, Ligong; Zhou, Qiannan The rank of a signed graph in terms of the rank of its underlying graph. Linear Algebra Appl. 538 (2018), 166–186.
4.Zhou, Qiannan; Wang, Ligong Distance signless Laplacian spectral radius and Hamiltonian properties of graphs. Linear Multilinear Algebra 65 (2017), no. 11, 2316–2323.
3.Lu, Yong; Wang, Ligong; Zhou, Qiannan Hermitian-Randić matrix and Hermitian-Randić energy of mixed graphs. J. Inequal. Appl. 2017, Paper No. 54, 14 pp.
2.Zhou, Qiannan; Wang, Ligong Some sufficient spectral conditions on Hamilton-connected and traceable graphs. Linear Multilinear Algebra 65 (2017), no. 2, 224–234.
1.Lu, Yong; Wang, Ligong; Zhou, Qiannan Bicyclic oriented graphs with skew-rank 6. Appl. Math. Comput. 270 (2015), 899–908.
六.社会兼职
美国《数学评论》评论员