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The paper under review concerns the theory of geometric evolution flows for closed
planar curves. Particularly, the Gage area preserving flow is considered so that the
evolution of a planar closed curve X:S1× [0, T )→ E2 is governed by the equation

∂X

∂t
(ϕ, t) =

(
k(ϕ, t)− 2π

L(t)

)
N(ϕ, t),

X(ϕ, 0) =X0(ϕ),

where k, L and N stand for the curvature, the length and the unit inward normal
of the evolving curve, respectively [see M. E. Gage, in Nonlinear problems in geometry
(Mobile, Ala., 1985), 51–62, Contemp. Math., 51, Amer. Math. Soc., Providence, RI,
1986; MR0848933].

If the initial curve X0:S1→ E2 is assumed to be convex, then the flow exists for all t ∈
[0,+∞) so that the evolving curve converges to a circle. On the other hand, there are
non-convex examples where the discussed convergence does not hold. Thus, the problem
is to find natural classes of closed planar curves where the convergence of the Gage area
preserving flow holds true.

The authors discuss the case of embedded star-shaped closed curves in E2 and prove
the following statement as the main result.

Theorem. Let X0 be a smooth embedded star-shaped closed curve in E2. If X0 is
symmetric with respect to its star center O, then the Gage area preserving flow exists
for all t ∈ [0,+∞) so that the evolving curve remains smooth, becomes convex in finite
time and converges to a circle centered at O as t→+∞.

The question of whether the proved statement holds true without the extra symmetry
requirement seems to be open. Actually, if X0 is not assumed to be centrosymmetric,
then the evolving curve might lose its star-shapedness, which would cause extra difficul-
ties in studying its asymptotic behavior. Vasyl Gorkavyy
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