
Results from MathSciNet: Mathematical Reviews on the Web
c© Copyright American Mathematical Society 2025

MR4728437 53E99 53A04

Gao, Laiyuan (PRC-XUNU-SMS)

Whitney-Graustein homotopy of locally convex curves via a curvature flow.
(English. English summary)

Math. Res. Lett. 30 (2023), no. 4, 1045–1062.

Summary: “Let X0, X̃ be two smooth, closed and locally convex curves in the plane
with same winding number. A curvature flow with a nonlocal term is constructed to
evolve X0 into X̃. It is proved that this flow exits globally, preserves both the local
convexity and the elastic energy of the evolving curve. If the two curves have same
elastic energy then the curvature flow deforms the evolving curve into the target curve
X̃ as time tends to infinity.”

The result fits into a larger picture, beginning with the Whitney-Graustein theorem
stating that any two smooth, closed curves may be smoothly deformed into each other if
and only if they have the same winding number [H. Whitney, Compositio Math. 4 (1937),
276–284; MR1556973]. A famous question of Yau asks how to construct a parabolic
curvature flow that realises the Whitney-Graustein deformation. An important result
in this direction is that of Lin-Tsai, defining such a parabolic flow that answers Yau’s
question (up to scale) provided the flow exists for all time [Y.-C. Lin and D.-H. Tsai,
J. Differential Equations 247 (2009), no. 9, 2620–2636; MR2568066]. A number of other
results have been obtained in this direction, with Gao and Zhang producing a nonlocal
flow that fully answers the question in the case of convex curves; that is, smooth
boundaries of convex bodies [L. Gao and Y. T. Zhang, J. Differential Equations 266

(2019), no. 1, 179–201; MR3870561].
The contribution here is to introduce a flow that answers Yau’s question in the case

of smooth, closed, locally convex curves, namely those with positive curvature, but not
necessarily simple. The answer is affirmative among such curves with the same winding
number, up to scale; more precisely, among such curves with the same elastic energy∫
κ2ds.
The (somewhat complicated) flow is nonlocal and fully nonlinear. It is phrased in

terms of the support function and radial function. Short-time existence and uniqueness
is proven, and a Harnack inequality is derived which is then used to bootstrap higher
order estimates. Convergence is obtained first by compactness and then by showing that
the limits are unique due to the preservation of elastic energy.

To finish, a detailed example is presented with supporting numerics and figures to
illustrate the result. Paul Bryan
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