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The paper under review deals with a problem of S. T. Yau’s that asks whether one can
use a parabolic curvature flow method to evolve one planar curve to another.

Extending previous results by Y.-C. Lin and D.-H. Tsai and by K.-S. Chou and X.-P.
Zhu, the authors introduce a novel curvature flow and tackle the problem for the case
of convex curves.

Namely, let two smooth, closed, convex curves X0:S1 → R2 and X̃:S1 → R2 be
prescribed. Consider a one-parameter family of smooth closed curves X:S1× [0, ω)→
R2 whose evolution in time t is governed by the equation

∂X

∂t
(ϕ, t) =

(
k(ϕ, t)−λ(t)k̃(ϕ)

)
N(ϕ, t), (ϕ, t) ∈ S1× [0, ω),

X(ϕ, 0) =X0(ϕ), ϕ ∈ S1,

where X(ϕ, t) describes the evolving curve, k(ϕ, t) and N(ϕ, t) are its curvature and

inner unit normal respectively, and k̃(ϕ) stands for the curvature of the target curve X̃.

The nonlocal term λ is equal to
∫
S1 k̃gdϕ, where g is the metric of X; it is chosen so

that the area enclosed by X remains constant during the evolution.
The main result of the paper states that the flow exists for all t ∈ [0,+∞), preserves

the convexity, and deforms the initial curve X0 into a curve X∞, which is congruent to
a homothetic copy of X̃, as t→+∞. Vasyl Gorkavyy
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