个人简介:洪伟,博士,副教授。2023年博士毕业于天津大学,概率论与数理统计专业。已在Probab. Theory Related Fields,Ann. Appl. Probab.,SIAM J. Math. Anal.,Ann. Inst. Henri Poincaré Probab. Stat., J. Differential Equations等国内外SCI杂志上发表论文十余篇。主持国家自然科学青年基金,江苏省自然科学青年基金项目。主要研究兴趣:随机 (偏) 微分方程,McKean-Vlasov 方程,多尺度系统,随机噪声的正则化效应。
E-mail address: weihong@jsnu.edu.cn
教育经历:
2013.09-2017.06:本科,江苏师范大学,数学与应用数学专业
2017.09-2020.06:硕士,江苏师范大学,统计学专业,导师:刘伟 教授
2020.09-2023.06:博士,天津大学,概率论与数理统计专业,导师:王凤雨 教授
工作经历:
2023.07-2024.01:讲师,江苏师范大学数学与统计学院
2024.01-至今: 副教授,江苏师范大学数学与统计学院
科研项目:
1. 国家自然科学基金青年基金(批准号:12401177),2025.01-2027.12
2. 江苏省自然科学基金青年基金(批准号:BK20241048),2024.09-2027.08
荣誉与获奖:
2021年 江苏省优秀硕士论文
2021年 博士国家奖学金
2021年 天津大学学生科学奖(提名奖)
2021年 天津大学科技创新先进个人
2022年 中国航天科技集团CASC奖学金
2023年 天津大学优秀博士论文
2023年 天津大学优秀毕业生
2023年 徐州市自然科学优秀学术论文二等奖
学术兼职:
美国《Mathematical Reviews》评论员 (2022-至今)
学术论文:
1. Hong, W., Li, S., Liu, W.(2020): Asymptotic Log-Harnack Inequality and Applications for SPDE with Degenerate Multiplicative Noise. Statistics and Probability Letters 164, 108810, 8 pp.
2. Hong, W., Li, S., Liu, W.(2021): Asymptotic Log-Harnack Inequality and Applications for Stochastic 2D Hydrodynamical-Type Systems with Degenerate Noise. Journal of Evolution Equations 21, 419-440.
3. Hong, W., Li, S., Liu, W.(2021): Well-Posedness and Exponential Mixing for Stochastic Magneto-Hydrodynamic Equations with Fractional Dissipations. Frontiers of Mathematics in China 16, 425-457.
4. Hong, W., Li, S., Liu, W.(2021): Asymptotic Log-Harnack Inequality and Ergodicity for 3D Leray-α Model with Degenerate Type Noise. Potential Analysis 55, 477-490.
5. Hong, W., Li, S., Liu, W. (2021): Large Deviation Principle for McKean-Vlasov Quasilinear Stochastic Evolution Equations. Applied Mathematics and Optimization 84, S1119-S1147.
6. Hong, W., Li, S., Liu, W.(2021): Freidlin-Wentzell Type Large Deviation Principle for Multiscale Locally Monotone SPDEs.SIAM Journal on Mathematical Analysis 53, 6517-6561.
7. Hong, W., Li, M., Li, S., Liu, W. (2022): Large Deviations and Averaging for StochasticTamed 3D Navier-Stokes Equations with Fast Oscillations. Applied Mathematics and Optimization 86, Paper No. 15, 54 pp.
8. Hong, W., Li, S., Liu, W. (2022): Strong Convergence Rates in Averaging Principle for Slow-Fast McKean-Vlasov SPDEs. Journal of Differential Equations 316, 94-135.
9. Gao, J., Hong, W., Liu, W. (2022): Distribution-Dependent Stochastic Porous Media Equations. Stochastics and Dynamics 22, Paper No. 2240026, 31 pp.
10. Huang, X., Hong, W., Liu, W.(2023): Stochastic Integral Evolution Equations with Locally Monotone and Non-Lipschitz Coefficients. Frontiers of Mathematics 18, 455-490.
11. Gao, J., Hong, W., Liu, W.(2023): Small Noise Asymptotics of Multi-Scale McKean-Vlasov Stochastic Dynamical Systems. Journal of Differential Equations 364, 521-575.
12. Hong, W., Li, S., Liu, W., Sun, X. (2023): Central Limit Type Theorem and Large Deviation Principle for Multi-Scale McKean-Vlasov SDEs. Probability Theory and Related Fields 187,133–201.
13. Hong, W., Hu S., Liu, W. (2024): McKean-Vlasov SDE and SPDE with Locally Monotone Coefficients, Annals of Applied Probability, 34, no. 2, 2136-2189.
14. Hong, W., Li, G., Li, S. (2024): Multi-Scale McKean-Vlasov SDEs: Moderate Deviation Principle in Different Regimes, Ann. Inst. Henri Poincaré Probab. Stat. arXiv:2306.11569, in press.
15. Hong, W., Li, S., Sun, X. (2025): Diffusion Approximation for Multi-Scale McKean-Vlasov SDEs Through Different Methods, Journal of Differential Equations, 414, 405-454.
16. Hong, W., Liu, W., Yang, L. (2025): Large Deviation Principle for Multi-Scale Fully Local Monotone Stochastic Dynamical Systems with Multiplicative Noise, Journal of Differential Equations, 416, 396-448.
17. Hong, W., Li, S., Liu, W. (2023): McKean-Vlasov Stochastic Partial Differential Equations: Existence, Uniqueness and Propagation of Chaos, arXiv:2306.15508, submitted.
18. Hong, W., Li, S., Liu, W. (2024): Regularization by Nonlinear Noise for PDEs: Well-posedness and Finite Time Extinction, arXiv:2407.06840, submitted.
19. Hong, W., Li, S., Liu, W. (2024): Propagation of Chaos for Weakly Coupled System of N-Interacting Stochastic Partial Differential Equations, submitted.
20. Hong, W., Yang, L., Yang, S. (2024): Averaging Principle for Multiscale Stochastic PDEs with Fully Local Monotone Coefficients, submitted.