个人简介:
侯典明,副教授,硕士生导师,2019年博士毕业于厦门大学数学科学学院,计算数学专业,获理学博士学位,师从许传炬教授. 已在 Math. Comput., SIAM. J. Sci. Comput., J. Comput. Phys., J. Sci. Comput.等国际学术期刊上发表SCI论文十余篇,近期主要研究兴趣:相场模型的保结构算法设计与分析.
E-mail:dmhou@stu.xmu.edu.cn
教育经历:
2013.09-2019.06 硕博连读于厦门大学数学科学学院,计算数学,师从许传炬教授;
2017.10-2018.10 国家公派留学法国波尔多大学,“科学计算创新型复合人才培养项目”,师从Mejdi Azaize 教授;
2009.09-2013.06 本科就读于新疆大学数学与系统科学学院(理科基地班),应用数学;
工作经历:
2022.07-至今,副教授,江苏师范大学数学与统计学院;
2019.07-2022.07,讲师,江苏师范大学数学与统计学院;
2021.08-2023.08,香港理工大学应用数学系,博士后,师从乔中华教授.
研究兴趣:
1、偏微分方程的数值解法及其分数阶微分方程的数值解法;
2、谱方法计算及应用;
3、相场模型的保结构算法设计、模拟和分析.
科研项目:
1、国家自然科学基金青年基金(12001248), 若干非局部奇性问题的高效Muntz谱方法研究,(2021.01-2023.12),主持 在研;
2、江苏省自然科学基金青年基金(BK20201020),几类分数阶微分方程的高效Muntz谱方法研究(2020.07-2023.06),主持 在研;
3、江苏省高校自然科学研究面上项目(2020.07-2022.06) 主持 在研;
4、江苏师范大学博士启动金,相场模型的高效算法设计与分析,(2019.12-2021.12),主持 结题;
5、国家自然科学基金面上项目, 11971408, 梯度流模型的算法设计、分析、及其应用, 2020.01-2023.12, 参与 在研,;
6、国家自然科学基金重大研究计划, 91630204, 相场模型的高精度算法设计及应用, 2017.01-2019.12, 参与 结题;
7、国家自然科学基金国际合作与交流项目, 51661135011, 多相复杂材料的相场模型,算法和模拟, 2017.01-2019.12, 参与 结题.
学术会议:
1、2016年The 20th IMACS World Congress(厦门,参会并做报告);
2、2017 JSPS A3 Foresight Program: GSIS International Winter School(日本仙台,参会并做报告);
3、2017年第六届谱方法及相关应用进展研讨会 (纪念郭本瑜教授,1942-2016)(湖南长沙,参会并做报告);
4、2017年第十一届全国计算数学年会(陕西西安,参会并做报告);
5、2018年NUMACH 2018 : Numerical Methods for Challenging Problems(法国米卢兹);
6、2019年3rd Workshop on Numerical Methods for Fractional-derivative Problems(北京计算科学中心);
7、2019年中国工业与应用数学学会第十七届年会(广东佛山,参会并做报告);
8、2021年5th Workshop on Numerical Methods for Fractional-derivative Problems(北京计算科学中心).
获奖与荣誉:
2022年11月获得2020—2021 年度徐州市自然科学优秀学术论文二等奖;
2022年江苏师范大学青年英才“苗圃计划”第三层次培养对象;
2021年06月获得江苏师范大学本科毕业论文优秀指导教师;
2020年06月获得江苏师范大学本科毕业论文优秀指导教师;
学生培养:
每年计划招收硕士研究生1-2名,对计算数学算法设计与分析感兴趣的同学,可以直接通过邮箱:dmhou@stu.xmu.edu.cn联系. 欢迎各年级本科生联系开展科研训练,加入课题组学习。
2022级:刘慧;张天祥;2023级:阳晴 2024级:陈思翰;张瑾
论文发表:(Mathscinet链接)
[18] Dianming Hou, Tianxiang Zhang, Hongyi Zhu, A linear second order unconditionally maximum bound principle-preserving scheme for the Allen-Cahn equation with general mobility, Applied Numerical Mathematics, 207:222-243,2025.
[17] Dianming Hou, Lili Ju, Zhonghua Qiao. Energy-dissipative spectral renormalization exponential integrator method for gradient flow problems, SIAM Journal on Scientific Computing, 46(6): A3477-A3502, 2024.
[16] Dianming Hou, Lili Ju, Zhonghua Qiao. A linear doubly stabilized Crank-Nicolson scheme for the Allen-Cahn equation with a general mobility, Advances in Applied Mathematics and Mechanics, 16(5):1009-1038,2024
[15] Dianming Hou, Zhonghua Qiao, Tao Tang. Fast high order and energy dissipative schemes with variable time steps for time-fractional molecular beam epitaxial growth model, Annals of Applied Mathematics, 39:429-461,2023 (Dedicated to the memory of Professor Zhongci Shi)
[14] Dianming Hou, Yuexin Ning, Chao Zhang. An efficient and robust Lagrange multiplier approach with a penalty term for phase-field models, Journal of Computational Physics,488:112236,2023.
[13] Dianming Hou, Zhonghua Qiao. A linear adaptive seond-order backward differentiation formulation scheme for the phase field crystal equation, Numerical Methods for Partial differential Equations, 39:4174-4195,2023. DOI: https://doi.org/10.1002/num.23041
[12] Dianming Hou, Lili Ju, Zhonghua Qiao. A linear second-order maximum bound principle-preserving BDF scheme for the Allen-Cahn equation with a general mobility, Mathematics of Computation, 92(344):2515-2542, 2023. DOI: https://doi.org/10.1090/mcom/3843
[11] Dianming Hou, Zhonghua Qiao. An implicit--explicit second order BDF numerical scheme with variable steps for gradient flows, Journal of Scientific Computing, 94:39,2023.
[10] Dianming Hou, Hui Wang, Chao Zhang. Positivity-preserving and unconditionally energy stable numerical schemes for MEMS model, Applied Numerical Mathematics, 181:503-517,2022.
[9] Dianming Hou, Chuanju Xu. A second order energy dissipative scheme for time fractional L2 gradient fows using SAV approach, Journal of Scientific Computing, 90:25,2022.
[8] Dianming Hou, Chuanju Xu. Highly efficient and energy dissipative schemes for time fractional Allen-Cahn equation. SIAM Journal on Scientific Computing, 43(5):A3305-A3327,2021.
[7] Dianming Hou, Chuanju Xu. Robust and stable schemes for time fractional molecular beam epitaxial growth model using SAV approach.Journal of Computational Physics,445:110628,2021.
[6] Dianming Hou, Hongyi Zhu, Chuanju Xu. Highly efficient schemes for time-fractional Allen-Cahn equation using extended SAV approach. Numer. Algorithms., 88:1077-1108,2021.
[5] Dianming Hou, Yumin,Lin, Mejdi Azaiez, Chuanju Xu, A Muntz-Collocation spectral method for weakly singular volterra integral equations, J. Sci. Comput., 81:2162-2187,2019.
[4] Dianming Hou, Mejdi Azaiez, Chuanju Xu, Muntz spectral method for two- dimensional space-fractional advection-diffusion equation, Commun. Comput. Phys.,26(5), 1415-1443,2019.
[3] Dianming Hou, Mejdi Azaiez, Chuanju Xu, A variant of scalar auxiliary variable approaches for gradient flows, J. Comput. Phys.,395,307-332,2019.
[2] Dianming Hou, Mohammad Tanzil Hasan, Chuanju Xu, A Muntz spectral method for the time fractional diffusion equation, Comput. Meth. Appl. Math., 18(1), 43-62,2018.
[1] Dianming Hou, Chuanju Xu, A fractional spectral method with applications to some singular problems, Adv. Comput. Math., 43(5) , 911-944,2017.
Preprint papers:
[1] Jianbo Cui, Dianming Hou, Zhonghua Qiao. Energy regularized models for logarithmic SPDEs and their numerical approximations., submitted, 1-26, 2023.
[2] Dianming Hou, Xiaoli Li, Zhonghua Qiao, Nan Zheng. Energy stable and maximum bound principle preserving schemes for the Q-tensor flow of liquid crystals, preprint, 1-30, 2023.
Useful links:
Matlab codes for the book “Spectral Methods Algorithms Analysis and Applications”by Jie Shen, Tao Tang and Li-Lian Wang
Shenfun's Documentation & Shenfun on Github by Mikael Mortensen
Matlab codes for the book “Spectral Methods in Matlab” by L. Trefethen
Python & Matlab codes for the book “Introduction to Computational Stochastic PDEs” by T.Shardlow.
Deep learning courses-(PINN) by Lulu.
Numerical methods for different equations with Python by John S Butler