卢勇,1989年出生,江苏泗阳人,中共党员,现任江苏师范大学副教授、硕士研究生导师、美国《数学评论》评论员、中国运筹学会图论组合分会青年理事、江苏省运筹学会理事、江苏师范大学2022年青年英才“苗圃计划”第三层次培养对象. 2018年毕业于西北工业大学,获理学博士学位. 主要研究方向:图论及其应用.
Email:luyong@jsnu.edu.cn. 招收运筹学与控制论学术型研究生,主要研究内容为:代数图论.
一. 工作经历
2021.08-至今 江苏师范大学 数学与统计学院 副教授
2018.05-2021.07 江苏师范大学 数学与统计学院 讲师
二.已授课程
高等数学II,线性代数,高等数学III(课程负责人),代数图论(研究生).
三. 获奖和荣誉
9. 2024年江苏省高校第十届数学基础课青年教师授课竞赛三等奖.
8. 2022年度江苏师范大学优秀工会积极分子;
7. 江苏师范大学2022年青年英才“苗圃计划”第三层次培养对象;
6. 2021年第二届江苏师范大学立德树人优秀研究生导师团队成员;
5. 2020年校先进工作者;
4. 2020年度江苏师范大学优秀工会积极分子;
3. 江苏省普通高等学校第十七届高等数学竞赛优秀指导教师;
2. 2020年江苏省高校第二届数学微课程教学竞赛三等奖;
1. 2019年江苏师范大学第十届青年教师教学优胜三等奖;
四. 主持的教学科研项目
4. 国家自然科学基金-面上项目(2024-2027)
3. 2024年江苏省高校“高质量公共课教学改革研究”一般课题
2. 国家自然科学基金-青年基金(2020-2022)
1. 江苏省高校自然科学研究面上项目(2019-2021)
五. 指导学生获奖和项目情况
1.指导本科生主持2021年江苏省大学生创新训练重点项目:复单位gain图的秩与图参数之间关系研究.
2.协助指导吴奇获2022年江苏师范大学优秀毕业研究生.
3.协助指导吴静雯获2021年江苏师范大学优秀毕业研究生.
六.发表 SCI 学术论文(*表示通讯作者)
32. Cui,Chunfeng, Lu, Yong, Qi, Liqun*, Wang, Ligong, Spectral properties of dual unit gain graphs. Symmetry. 16 (2024),No. 1142.
31. Du,Kexin, Lu, Yong*, Zhou, Qiannan,The gap between the rank of a complex unit gain graph and its underlying graph. Discrete Appl. Math. 357 (2024), 399-412.
30. Wang, Yuxuan, Shang,Rentian, Wu, Jingwen, Lu,Yong *,No T -gain graph with the rank r (Φ) = 2m(G) − 2c(G) + 1.ScienceAsia. 50 (4) (2024): ID 2024013: 1-8.
29. Zhou, Qiannan; Broersma,Hajo*; Wang, Ligong; Lu, Yong, A note on minimum degree, bipartite holes, and hamiltonian properties. Discuss. Math. Graph Theory. 44 (2024), 717-726.
28. Wu,Qi; Lu, Yong*; Inertia indices of a complex unit gain graph in terms of matching number.Linear and Multilinear Algebra. 71 (2023), 1504-1520.
27. Zhou, Qiannan; Lu, Yong*, Relation between the row left rank of a quaternion unit gain graph and the rank of its underlying graph. Electron J Linear Algebra. 39 (2023), 181-198.
26. Wu,Qi; Lu,Yong*; Tam,Bit-Shun, On connected signed graphs with rank equal to girth. Linear Algebra Appl. 651 (2022), 90-115.
25. Lu, Yong*,Some generalizations of spectral conditions for 2s-hamiltonicity and 2s-traceability of bipartite graphs. Linear and Multilinear Algebra.70 (2022), 1907-1927.
24. Lu, Yong; Zhou, Qiannan*,On hyper-Zagreb index conditions for hamiltonicity of graphs. Czech. Math. J. 72 (2022), 653-662.
23. Lu, Yong*;Xu, Weiru, A lower bound of the rank of a signed graph in terms of order and maximum degree. ScienceAsia. 47 (2021), 779-784.
22. Zhou, Qiannan; Broersma,Hajo*; Wang, Ligong; Lu, Yong, Sufficient Spectral Radius Conditions for Hamilton Connectivity of k-Connected Graphs. Graphs Combin. 37 (2021), 2467–2485.
21. Zhou, Qiannan; Broersma,Hajo*; Wang, Ligong; Lu, Yong, On sufficient spectral radius confitions for hamiltonicity.Discrete Appl. Math. 296 (2021), 26–38.
20. Lu, Yong*; Zhou, Qiannan, On sufficient topological indices conditions for properties of graphs. J. Comb.Optim. 41 (2021), no. 2, 487–503.
19. Lu, Yong*; Wu, Jingwen, No signed graph with the nullity η(G,σ)=|V(G)|−2m(G)+2c(G)−1. Linear Algebra Appl. 615 (2021), 175–193.
18. Lu, Yong*; Wu, Jingwen, Bounds for the rank of a complex unit gain graph in terms of its maximum degree. Linear Algebra Appl. 610 (2021), 73–85.
17. Zhou, Qiannan; Wang, Ligong*; Lu, Yong, Some sufficient conditions for some graph properties. Ars Combin. 153 (2020), 161–175.
16. Zhou, Qiannan; Broersma,Hajo*; Wang, Ligong; Lu, Yong, On sufficient spectral radius conditions for hamiltonicity of k-connected graphs. Linear Algebra Appl. 604 (2020), 129–145.
15. Zhou, Qiannan; Wang, Ligong*; Lu, Yong, Sufficient conditions for Hamilton-connected graphs in terms of (signless Laplacian)spectral radius. Linear Algebra Appl. 594 (2020), 205–225.
14. Zhou, Qiannan; Wang, Ligong*; Lu, Yong, Signless Laplacian spectral conditions for Hamilton-connected graphs with large minimum degree. Linear Algebra Appl. 592 (2020), 48–64.
13. Zhou, Qiannan; Wang, Ligong*; Lu, Yong, Wiener-type invariants and Hamiltonian properties of graphs. Filomat. 33 (2019), no. 13, 4045–4058.
12. Lu, Yong; Wang, Ligong*; Zhou, Qiannan, The rank of a complex unit gain graph in terms of the rank of its underlying graph. J. Comb.Optim. 38 (2019), no. 2, 570–588.
11. Lu, Yong; Wang, Ligong*; Zhou, Qiannan, Skew-rank of an oriented graph in terms of the rank and dimension of cycle space of its underlying graph. Filomat. 32 (2018), no. 4, 1303–1312.
10. Zhou, Qiannan; Wang, Ligong*; Lu, Yong, Wiener index and Harary index on Hamilton-connected graphs with large minimum degree. Discrete Appl. Math. 247 (2018), 180–185.
9. Zhou, Qiannan; Wang, Ligong*; Lu, Yong, Wiener-type invariants on graph properties. Filomat. 32(2018), no. 2, 489–502.
8. Zhou, Qiannan; Wang, Ligong*; Lu, Yong, Some sufficient conditions on k-connected graphs. Appl. Math. Comput. 325 (2018), 332–339.
7. Lu, Yong; Wang, Ligong*; Zhou, Qiannan, The rank of a signed graph in terms of the rank of its underlying graph. Linear Algebra Appl. 538 (2018), 166–186.
6. Lu, Yong; Wang, Ligong*; Xiao, Peng, Complex unit gain bicyclic graphs with rank 2, 3 or 4. Linear Algebra Appl. 523 (2017), 169–186.
5. Xiao, Peng; Wang, Ligong*; Lu, Yong, The maximum spectral radii of uniform supertrees with given degree sequences. Linear Algebra Appl. 523 (2017), 33–45.
4. Lu, Yong; Wang, Ligong*; Zhou, Qiannan, Hermitian-Randić matrix and Hermitian-Randić energy of mixed graphs. J. Inequal.Appl. 2017, No. 54, 14 pp.
3. Lu, Yong; Wang, Ligong*; Zhou, Qiannan, Bicyclic oriented graphs with skew-rank 6. Appl. Math.Comput. 270 (2015), 899–908.
2. Lei, Ying-Jie; Xu, Wei-Ru*; Lu, Yong; Niu, Yan-Ru; Gu, Xian-Ming, On the symmetric doubly stochastic inverse eigenvalue problem. Linear Algebra Appl. 445 (2014), 181–205.
1. Xu, Wei-Ru*; Lei, Ying-Jie; Gu, Xian-Ming; Lu, Yong; Niu, Yan-Ru, Commenton “A note on the inverse eigenvalue problem for symmetric doubly stochastic matrices”. Linear Algebra Appl. 439 (2013), no. 8, 2256–2262.
七.社会兼职
美国《数学评论》评论员、中国运筹学会图论组合分会青年理事、江苏省运筹学会理事.
八. 所带研究生
2024级 钟嘉旭、贾彩丽
2023级 刘香格
2022级 沈琪