报告人:周望 教授
报告题目:MULTIPLIER BOOTSTRAP MEETS HIGH-DIMENSIONAL PCA: THE GOOD, THE BAD AND THE MODIFICATION
报告时间:2025年11月18日(周二)10:00-11:00
报告地点:云龙校区6号楼304会议室
主办单位:数学与统计学院、数学研究院、科学技术研究院
报告人简介:
周望,2004年7月起在新加坡国立大学统计系任教,并于2009年1月获终身教授。现为新加坡国立大学教授,国际著名期刊Random Matrices-Theory and Applications的主编。主要研究方向为: High dimensional statistics,Random matrices, SLE,等。近年来发表有高水平论文九十多篇。 其中在概率统计学方面的国际公认的顶尖杂志Annals of Statistics, Journal of American Statistical Association, Biometrika, Annals of Probability, Probability Theory and Related Fields, Annals of Applied Probability上发表论文二十余篇。2005年起主持新加坡政府基金项目十余项。2012获国际统计学会当选成员(Elected Member of International Statistical Institute);2021年获国际数理统计学会(IMS)Fellow。
报告摘要:
In this paper, we examine the feasibility (i.e., both the good advantages and the bad limitations) and the adaptivity (i.e., the potential for beneficial modifications) of employing multiplier bootstrap to analyze the asymptotic distributions of the largest eigenvalues of potentially spiked high-dimensional sample covariance matrices. Our findings and proposed algorithms demon- strate that multiplier bootstrap remains valid, provided the multipliers are ap-propriately chosen and the bootstrap procedures are applied multiple times with suitable corrections.


