报 告 人:汪彦 副教授
报告题目:Rainbow matchings for 3-partite 3-uniform hypergraphs
报告时间:2025年02月24日(周一)下午4:00
报告地点:静远楼1508会议室
主办单位:数学与统计学院、数学研究院、科学技术研究院
报告人简介:
汪彦,上海交通大学数学科学学院副教授。2017年博士毕业于美国佐治亚理工学院,师从国际著名图论专家郁星星教授。他获得上海市海外高层次人才计划,并主持国家重点研发计划青年科学家项目,主要研究方向为图论,发表多篇高水平论文,与郁星星教授等合作证明了近四十年的Kelmans-Seymour猜想等。
报告摘要:
Let $m,n,r,s$ be nonnegative integers such that $n\ge m=3r+s$ and $1\leq s\leq 3$. Let
\[\delta(n,r,s)=\left\{\begin{array}{ll} n^2-(n-r)^2 &\text{if}\
s=1 , \\[7px]
n^2-(n-r+1)(n-r-1) &\text{if}\
s=2,\\[7px]
n^2 - (n-r)(n-r-1) &\text{if}\ s=3.
\end{array}\right.\]
We show that there exists a constant $n_0 > 0$ such that if $F_1,\ldots, F_n$ are 3-partite 3-graphs with $n\ge n_0$ vertices in each partition class and minimum vertex degree of $F_i$ is at least $\delta(n,r,s)+1$ for $i \in [n]$ then $\{F_1,\ldots,F_n\}$ admits a rainbow perfect matching. This generalizes a result of Lo and Markstr\om on the vertex degree threshold for the existence of perfect matchings in 3-partite 3-graphs. In this proof, we use a fractional rainbow matching theory obtained by \textit{Aharoni et al.} to find edge-disjoint fractional perfect matching.