5月7日 中山大学胡平副教授学术报告

发布时间:2025-05-05   浏览次数:18

报 告 人:胡平 副教授

报告题目:On short directed cycles in triangle-free digraphs

报告时间:202557日(周四)下午200

报告地点:腾讯会议:505-447-503

主办单位:数学与统计学院、数学研究院、科学技术研究院

报告人简介:

      胡平,本科毕业于北京大学数学系,20148月在美国伊利诺伊大学香槟分校获得数学博士学位,201410月至20178月在英国华威大学任研究员,2017年入职中山大学任副教授。研究领域包括Ramsey理论和Turán理论等。在JCTB, RSA, CPC, JGT, EJC等期刊杂志发表论文多篇。主持国家自然科学基金青年、面上项目各一项。

报告摘要:

                 Seymour and Spirkl considered a bipartite version of the Caccetta-Häggkvist Conjecture. They conjectured that if G is a bipartite digraph with n vertices in each part, and every vertex has out-degree more than n/(k+1), then G has a directed cycle of length at most 2k. And they proved this for k=1,2,3,4,6 and k at least 224539. Since bipartite is without all odd cycles, we consider a strengthening of this conjecture by changing bipartite to triangle-free. We show that for k at most 5, if G is a n-vertex digraph without transitive triangle, and every vertex has out-degree more than n/(k+1), then G has a directed cycle of length at most k.