APPM 2360: Midterm exam 2

October 19, 2016
ON THE FRONT OF YOUR BLUEBOOK write: (1) your name, (2) your instructor's name, (3) your recitation section number and (4) a grading table. Text books, class notes, cell phones and calculators are NOT permitted. A one page (letter sized 1 side only) crib sheet is allowed.

Problem 1: (24 points) True/False (answer True if it is always true; otherwise answer False) No justification is needed.
(a) The system of equations $\left[\begin{array}{lll}a & b & c \\ d & e & f\end{array}\right] \vec{x}=\left[\begin{array}{l}1 \\ 2\end{array}\right]$ has at least one solution \vec{x} for any values of a, b, c, d, e, f.
(b) The polynomials $\left\{x^{2}+1, x+2, x^{2}-x-1\right\}$ form a basis for \mathbb{P}_{2}.
(c) If $\vec{v}_{i}, i=1,2, \ldots 5$ are vectors, and $\mathbb{W}=\operatorname{Span}\left\{\vec{v}_{1}, \vec{v}_{2}, \vec{v}_{3}, \vec{v}_{4}, \vec{v}_{5}\right\}$, then the dimension of \mathbb{W} is always 5 .
(d) The set of all 4×4 matrices that have 0 entries on the diagonal is a vector space.

Problem 2: (24 points) Short Answer questions. A short justification is sufficient but do not simply answer True/False or Yes/No.
(a) Are the vectors $[0,1,1],[0,2,0],[2,0,1] \in \mathbb{M}_{13}$ (the space of 1×3 matrices) linearly independent or linearly dependent?
(b) Consider the set of all solutions to the differential equation

$$
y^{\prime \prime}+y=\sin (2 t)
$$

Is this set a vector space? (Remember to briefly justify your answer).
(c) Consider the set

$$
W=\left\{\left[\begin{array}{l}
1 \\
0 \\
0
\end{array}\right],\left[\begin{array}{l}
0 \\
1 \\
0
\end{array}\right],\left[\begin{array}{l}
1 \\
1 \\
k
\end{array}\right]\right\} .
$$

(i) For what value(s) of k does W constitute a basis for \mathbb{R}^{3} ?
(ii) If $\mathbb{V}=\operatorname{Span}(W)$, for what value(s) of k is $\operatorname{dim}(\mathbb{V})=2$?

Problem 3: (26 points) Consider the matrix

$$
A=\left[\begin{array}{rrr}
2 & -1 & -1 \\
0 & 1 & 0 \\
2 & 1 & -1
\end{array}\right]
$$

(a) Write down the characteristic polynomial that determines eigenvalues of A.
(b) Find the eigenvalues of A.
(c) Find the eigenvector(s) of A for its largest eigenvalue. (only the LARGEST λ !)
(d) What is the dimension of the eigenspace \mathbb{E}_{λ} for the eigenvalue in (c)?

Problem 4: (24 points)
(a) Consider the following two matrices:

$$
A=\left[\begin{array}{cccc}
1 & 4 & 7 & 9 \\
0 & 2 & 11 & 12 \\
0 & 0 & 1 & 9 \\
0 & 0 & 0 & 2
\end{array}\right], \quad B=\left[\begin{array}{lll}
1 & 0 & 1 \\
0 & 1 & 1 \\
0 & 2 & 2
\end{array}\right]
$$

For each matrix, indicate 1) its rank and 2) whether its inverse exists. Do not calculate the inverse; only indicate whether or not it exists. In each case, explain your answer and/or show your work.
(b) Consider the following system of equations $\left[\begin{array}{lll}1 & 0 & 2 \\ 0 & 1 & 3 \\ 0 & 2 & 6\end{array}\right] \vec{x}=\left[\begin{array}{c}2 \\ -1 \\ k\end{array}\right]$.
(i) For which value(s) of k is the system consistent?
(ii) For a value of k for which the system is consistent, determine at least two solutions.

Problem 5: (24 points) Consider the matrix $A=\left[\begin{array}{lllll}1 & 2 & 1 & 2 & 1 \\ 1 & 2 & 2 & 3 & 1 \\ 0 & 0 & 0 & 0 & 1 \\ 2 & 4 & 3 & 5 & 2\end{array}\right]$
(a) Find the RREF of A.
(b) Find a basis for

$$
\mathbb{U}=\operatorname{Span}\left\{\left[\begin{array}{l}
1 \\
1 \\
0 \\
2
\end{array}\right],\left[\begin{array}{l}
2 \\
2 \\
0 \\
4
\end{array}\right],\left[\begin{array}{l}
1 \\
2 \\
0 \\
3
\end{array}\right],\left[\begin{array}{l}
2 \\
3 \\
0 \\
5
\end{array}\right],\left[\begin{array}{l}
1 \\
1 \\
1 \\
2
\end{array}\right]\right\} .
$$

(Notice these are the column vectors of the matrix A.)
(c) Are the vectors $\vec{v}_{1}=\left[\begin{array}{l}1 \\ 1 \\ 0 \\ 2\end{array}\right], \vec{v}_{2}=\left[\begin{array}{l}1 \\ 1 \\ 1 \\ 2\end{array}\right], \vec{v}_{3}=\left[\begin{array}{l}1 \\ 2 \\ 0 \\ 3\end{array}\right]$, and $\vec{v}_{4}=\left[\begin{array}{l}2 \\ 3 \\ 0 \\ 5\end{array}\right]$ linearly independent?

Explain. (Hint: they are column vectors of A).

Problem 6: (28 points) Consider the linear system:

$$
\begin{array}{rlrl}
2 x+y & & =0 \\
5 x+3 y & = & 1 \\
& -2 y+z & = & -4 .
\end{array}
$$

(a) Write this system in matrix form as $\mathrm{A} \vec{x}=\vec{b}$.
(b) Compute A^{-1}.
(Hint: you can check your answer by testing if $A^{-1} A=\mathbf{I}$.)
(c) Use your answer from part (b) to compute \vec{x}. Do not row-reduce to solve for \vec{x}.

