APPM 2360: Midterm Exam 3

November 16, 2016
ON THE FRONT OF YOUR BLUEBOOK write: (1) your name, (2) your instructor's name, (3) your recitation section number and (4) a grading table. Text books, class notes, cell phones and calculators are NOT permitted. A one page (letter sized 1 side only) crib sheet is allowed.

Problem 1: (30 points; 6 points each) True/False questions. Answer True if the statement is always true. Answer False otherwise. Box your answer. No partial credit will be given.
(a) If $y(t) \neq 0$ is a solution to the homogeneous mass-spring problem $m y^{\prime \prime}+b y^{\prime}+k y=0$ with damping (i.e. $b>0$), then there is at most one value of t where $y(t)=0$.
(b) Let x be a solution to $x^{\prime \prime}+9 x=\cos (3 t)$. Then the amplitude of x is bounded for all time.
(c) $y_{1}(t)=e^{-2 t}+e^{-3 t}$ and $y_{2}(t)=e^{-2 t}-e^{-3 t}$ are linearly independent solutions to $y^{\prime \prime}+5 y^{\prime}+$ $6 y=0$.
(d) All solutions to $y^{\prime \prime}+4 y=0$ can be written in the form $y(t)=A \cos (2 t-\delta)$ for some choice of constants A and δ.
(e) Consider the DE:

$$
\begin{equation*}
y^{\prime \prime \prime}+y^{\prime \prime}+2 y^{\prime}+3 y=0 . \tag{1}
\end{equation*}
$$

If $y_{1}(t)$ and $y_{2}(t)$ are two linearly independent solutions to Equation 1, then every possible solution to Equation 1 may be written as $y(t)=c_{1} y_{1}(t)+c_{2} y_{2}(t)$ for an appropriate choice of the constants c_{1} and c_{2}.

Problem 2: (30 points) Consider the DE

$$
\begin{equation*}
y^{\prime \prime}+4 y^{\prime}+4 y=f(t) \tag{2}
\end{equation*}
$$

(a) Find the general solution to the homogeneous system $(f(t)=0)$.
(b) Using the method of undetermined coefficients, find the FORM of a particular solution of Equation 2 when
(i) $f(t)=f_{1}(t)=e^{t}+3 \sin (t)$,
(ii) $f(t)=f_{2}(t)=7 e^{-2 t}$.

Please do not solve for the coefficients.
(c) Using the method of undetermined coefficients, find a particular solution of Equation 2 if

$$
f(t)=f_{3}(t)=32 t e^{2 t}
$$

You should solve for the coefficients.

Problem 3: (30 points) Consider the second order DE for $t>0$:

$$
\begin{equation*}
y^{\prime \prime}-\frac{2}{t} y^{\prime}+\frac{2}{t^{2}} y=f(t) \tag{3}
\end{equation*}
$$

Note that $y_{1}(t)=t$ and $y_{2}(t)=t^{2}$ are both solutions to Equation 3 when $f(t)=0$.
(a) Compute the Wronskian of y_{1} and y_{2}
(b) Use the method of variation of parameters to find a particular solution to Equation 3 when $f(t)=15 t^{3 / 2}$.
(c) Write down the general solution of Equation 3, using the $f(t)$ from part (b).

Problem 4: (30 points) Consider the general mass-spring system described by

$$
m x^{\prime \prime}+b x^{\prime}+k x=f(t)
$$

with mass $m=2 \mathrm{~kg}$ and spring constant $k=32 \mathrm{nt} / \mathrm{m} . f(t)$ is some forcing function, and b is the damping constant.
(a) In the absence of forcing and damping, what is the resonant frequency of the system?
(b) Suppose that damping is now present $(b>0)$ and that no forcing is applied. We displace the mass a distance of 1 m from its equilibrium position and release it. What value(s) of the damping constant b will ensure that the mass crosses its equilibrium position no more than once?
(c) Describe the long-term behavior of the undamped system when it is subject to the forcing function $f(t)=\cos 4 t$. Note: Simply writing down a formula for the general solution does not constitute an answer to this question.
(d) Find the unique solution $x(t)$ for the undamped, unforced system subject to the initial conditions $x(0)=10, x^{\prime}(0)=0$.

Problem 5: (30 points)
(a) (25 points) Consider the initial value problem

$$
y^{\prime \prime}+y^{\prime}-6 y=1, \quad y(0)=-1, \quad y^{\prime}(0)=0 .
$$

Solve for y using the Laplace transform method; do not use other methods!
(b) (5 points) What is the inverse Laplace transform of $X(s)=\frac{1}{(s+4)^{2}+36}$?

Table of Laplace Transforms

$\mathcal{L}\{f(t)\}=F(s) \equiv \int_{0}^{\infty} e^{-s t} f(t) d t$
By linearity, $\mathcal{L}\{a f(t)+b g(t)\}=a F(s)+b G(s)$.

1. $\mathcal{L}\{1\}=\frac{1}{s}, s>0$
2. $\mathcal{L}\left\{e^{a t} \sin b t\right\}=\frac{b}{(s-a)^{2}+b^{2}}, s>a$
3. $\mathcal{L}\left\{t^{n}\right\}=\frac{n!}{s^{n+1}}, n$ a positive integer, $s>0$
4. $\mathcal{L}\left\{e^{a t} \cos b t\right\}=\frac{s-a}{(s-a)^{2}+b^{2}}, s>a$
5. $\mathcal{L}\left\{e^{a t}\right\}=\frac{1}{s-a}, s>a$
6. $\mathcal{L}\{\sinh b t\}=\frac{b}{s^{2}-b^{2}}, s>|b|$
7. $\mathcal{L}\left\{t^{n} e^{a t}\right\}=\frac{n!}{(s-a)^{n+1}}, n$ a positive integer, $s>a$
8. $\mathcal{L}\{\cosh b t\}=\frac{s}{s^{2}-b^{2}}, s>|b|$
9. $\mathcal{L}\{\sin b t\}=\frac{b}{s^{2}+b^{2}}, s>0$
10. $\mathcal{L}\{t f(t)\}=-\frac{d}{d s} F(s), s>0$
11. $\mathcal{L}\{\cos b t\}=\frac{s}{s^{2}+b^{2}}, s>0$
12. $\mathcal{L}\left\{e^{a t} f(t)\right\}=F(s-a), s>a$
13. ${ }^{*} \mathcal{L}\left\{f^{\prime}(t)\right\}=s F(s)-f(0), s>\alpha$
14. ${ }^{*} \mathcal{L}\left\{f^{\prime \prime}(t)\right\}=s^{2} F(s)-s f(0)-f^{\prime}(0), s>\alpha$
15.* $\mathcal{L}\left\{f^{(n)}(t)\right\}=s^{n} F(s)-s^{n-1} f(0)-s^{n-2} f^{\prime}(0)-\cdots-f^{n-1}(0), s>\alpha \quad$ (nth derivative)

* α is the exponential order of $f(t)$ and its derivatives. [See Sec. 8.3 equation (4).]

