APPM 2360: Midterm exam 2, SOLUTIONS

October 19, 2016
Problem 1: (24 points) True/False (answer True if it is always true; otherwise answer False) No justification is needed.
(a) The system of equations $\left[\begin{array}{lll}a & b & c \\ d & e & f\end{array}\right] \vec{x}=\left[\begin{array}{l}1 \\ 2\end{array}\right]$ has at least one solution \vec{x} for any values of a, b, c, d, e, f.
(b) The polynomials $\left\{x^{2}+1, x+2, x^{2}-x-1\right\}$ form a basis for \mathbb{P}_{2}.
(c) If $\vec{v}_{i}, i=1,2, \ldots 5$ are vectors, and $\mathbb{W}=\operatorname{Span}\left\{\vec{v}_{1}, \vec{v}_{2}, \vec{v}_{3}, \vec{v}_{4}, \vec{v}_{5}\right\}$, then the dimension of \mathbb{W} is always 5 .
(d) The set of all 4×4 matrices that have 0 entries on the diagonal is a vector space.

Solution:

(a) False. The equation may be inconsistent.
(b) False. These polynomials are not linearly independent. Note that

$$
\begin{equation*}
x^{2}-x-1=\left(x^{2}+1\right)-(x+2) . \tag{1}
\end{equation*}
$$

(c) False. The dimension of \mathbb{W} can be $0,1,2,3,4$ and 5.
(d) True, it satisfies the closure properties under addition and scalar multiplication.

Problem 2: (24 points) Short Answer questions. A short justification is sufficient but do not simply answer True/False or Yes/No.
(a) Are the vectors $[0,1,1],[0,2,0],[2,0,1] \in \mathbb{M}_{13}$ (the space of 1×3 matrices) linearly independent or linearly dependent?
(b) Consider the set of all solutions to the differential equation

$$
y^{\prime \prime}+y=\sin (2 t)
$$

Is this set a vector space? (Remember to briefly justify your answer).
(c) Consider the set

$$
W=\left\{\left[\begin{array}{l}
1 \\
0 \\
0
\end{array}\right],\left[\begin{array}{l}
0 \\
1 \\
0
\end{array}\right],\left[\begin{array}{l}
1 \\
1 \\
k
\end{array}\right]\right\} .
$$

(i) For what value(s) of k does W constitute a basis for \mathbb{R}^{3} ?
(ii) If $\mathbb{V}=\operatorname{Span}(W)$, for what value(s) of k is $\operatorname{dim}(\mathbb{V})=2$?

Solution:

(a) Yes, these are linearly independent. You can put these into a system of equations and check that the coefficient matrix is invertible (e.g.., check the determinant is nonzero, or that you have 3 pivot columns after row-reducing).
(b) No, since this is an inhomogenous linear ODE. For example, $y(t)=0$ is not a solution, so it cannot be a vector space.
(c) (i) $k \neq 0$ makes this set of three vectors linearly independent. The question wanted all possible values of k.
(ii) $k=0$ makes this set linearly dependent (the third vector is the sum of the first two). In this case, only the first two vectors are needed to form a basis for \mathbb{V}, giving it dimension 2.

Problem 3: (26 points) Consider the matrix

$$
A=\left[\begin{array}{rrr}
2 & -1 & -1 \\
0 & 1 & 0 \\
2 & 1 & -1
\end{array}\right]
$$

(a) Write down the characteristic polynomial that determines eigenvalues of A.
(b) Find the eigenvalues of A.
(c) Find the eigenvector(s) of A for its largest eigenvalue. (only the LARGEST λ !)
(d) What is the dimension of the eigenspace \mathbb{E}_{λ} for the eigenvalue in (c)?

Solution:

(a) Expanding along the second row, then

$$
\begin{aligned}
p(\lambda) & =(1-\lambda)\left|\begin{array}{rr}
2-\lambda & -1 \\
2 & -1-\lambda
\end{array}\right| \\
& =(1-\lambda)\left(\lambda^{2}-\lambda\right)=-\lambda(1-\lambda)^{2}
\end{aligned}
$$

(b) $p(\lambda)=-(\lambda-1)^{2}(\lambda-0)$. So the eigenvalues are $\lambda_{1}=1$ and $\lambda_{2}=1$ and $\lambda_{3}=0$ (you should list the 1 eigenvalue twice, or make specific mention that it has algebraic multiplicity 2).
(c) To find the eigenvector(s) for $\lambda=1$, we solve

$$
(A-I) \vec{v}=0
$$

which gives the augmented matrix

$$
\left[\begin{array}{ccc|c}
1 & -1 & -1 & 0 \\
0 & 0 & 0 & 0 \\
2 & 1 & -2 & 0
\end{array}\right]
$$

As the second row is zero and the last row is independent of the first there is going to be one free variable. Flipping row 2 and 3 and subtracting twice the first row from the (new) 2nd row gives

$$
\left[\begin{array}{ccc|c}
1 & -1 & -1 & 0 \\
0 & 3 & 0 & 0 \\
0 & 0 & 0 & 0
\end{array}\right]
$$

which implies that the eigenvector solves $v_{3}=s$ (arbitrary), $v_{2}=0$, and $v_{1}=v_{3}=s$, so we have

$$
\vec{v}=\left[\begin{array}{l}
1 \\
0 \\
1
\end{array}\right]
$$

Note: any other non-zero value of s is fine here.
(d) The dimension of \mathbb{E}_{1} is 1 since there is one eigenvector for $\lambda=1$. (Note that this matrix has a deficiency of eigenvectors; it is not diagonalizable).
Problem 4: (24 points)
(a) Consider the following two matrices:

$$
A=\left[\begin{array}{cccc}
1 & 4 & 7 & 9 \\
0 & 2 & 11 & 12 \\
0 & 0 & 1 & 9 \\
0 & 0 & 0 & 2
\end{array}\right], \quad B=\left[\begin{array}{lll}
1 & 0 & 1 \\
0 & 1 & 1 \\
0 & 2 & 2
\end{array}\right]
$$

For each matrix, indicate 1) its rank and 2) whether its inverse exists. Do not calculate the inverse; only indicate whether or not it exists. In each case, explain your answer and/or show your work.

Solution: Note that since A is upper triangular, and the diagonal elements are nonzero, it has four nonzero pivots and so has rank 4 (indeed $|A|=4$ as well), thus it has an inverse. B has the RREF

$$
\left[\begin{array}{lll}
1 & 0 & 1 \\
0 & 1 & 1 \\
0 & 0 & 0
\end{array}\right]
$$

so it has rank 2. Since this is not full rank, it has no inverse.
(b) Consider the following system of equations $\left[\begin{array}{lll}1 & 0 & 2 \\ 0 & 1 & 3 \\ 0 & 2 & 6\end{array}\right] \vec{x}=\left[\begin{array}{c}2 \\ -1 \\ k\end{array}\right]$.
(i) For which value(s) of k is the system consistent?
(ii) For a value of k for which the system is consistent, determine at least two solutions.

Solution:

(a) The matrix is not invertible (not full rank), so there is not always a solution. The 3rd equation is twice the 2 nd equation, so we need $k=-2$. To see it more systematically, put into RREF

$$
\left[\begin{array}{ccc|c}
1 & 0 & 2 & 2 \\
0 & 1 & 3 & -1 \\
0 & 2 & 6 & k
\end{array}\right] \xrightarrow{R_{3} \leftarrow R_{3}-2 R_{2}}\left[\begin{array}{ccc|c}
1 & 0 & 2 & 2 \\
0 & 1 & 3 & -1 \\
0 & 0 & 0 & k+2
\end{array}\right]
$$

so this last equation is only possible if $k+2=0$, i.e., $k=-2$.
(b) For $k=-2$, we get that x_{3} is a free variable, so call this $x_{3}=t$ for any $t \in \mathbb{R}$. Then the first equation requires $x_{1}+2 t=-2$ and the next equation requires $x_{2}+3 t=-1$, so our general solution is $\vec{x}=\left[\begin{array}{c}2-2 t \\ -1-3 t \\ t\end{array}\right]$. Plug in any values of t to find solutions, e.g., $t=1$ gives $\left[\begin{array}{c}0 \\ -4 \\ 1\end{array}\right]$; and $t=0$ gives $\left[\begin{array}{c}2 \\ -1 \\ 0\end{array}\right]$.

Problem 5: (24 points) Consider the matrix $A=\left[\begin{array}{ccccc}1 & 2 & 1 & 2 & 1 \\ 1 & 2 & 2 & 3 & 1 \\ 0 & 0 & 0 & 0 & 1 \\ 2 & 4 & 3 & 5 & 2\end{array}\right]$
(a) Find the RREF of A.
(b) Find a basis for

$$
\mathbb{U}=\operatorname{Span}\left\{\left[\begin{array}{l}
1 \\
1 \\
0 \\
2
\end{array}\right],\left[\begin{array}{l}
2 \\
2 \\
0 \\
4
\end{array}\right],\left[\begin{array}{l}
1 \\
2 \\
0 \\
3
\end{array}\right],\left[\begin{array}{l}
2 \\
3 \\
0 \\
5
\end{array}\right],\left[\begin{array}{l}
1 \\
1 \\
1 \\
2
\end{array}\right]\right\} .
$$

(Notice these are the column vectors of the matrix A.)
(c) Are the vectors $\vec{v}_{1}=\left[\begin{array}{l}1 \\ 1 \\ 0 \\ 2\end{array}\right], \vec{v}_{2}=\left[\begin{array}{l}1 \\ 1 \\ 1 \\ 2\end{array}\right], \vec{v}_{3}=\left[\begin{array}{l}1 \\ 2 \\ 0 \\ 3\end{array}\right]$, and $\vec{v}_{4}=\left[\begin{array}{l}2 \\ 3 \\ 0 \\ 5\end{array}\right]$ linearly independent?

Explain. (Hint: they are column vectors of A).

Solution:

(a) $A=\left[\begin{array}{lllll}1 & 2 & 1 & 2 & 1 \\ 1 & 2 & 2 & 3 & 1 \\ 0 & 0 & 0 & 0 & 1 \\ 2 & 4 & 3 & 5 & 2\end{array}\right] \xrightarrow[R_{4} \leftarrow R_{4}-2 R_{1}]{R_{2} \leftarrow R_{2}-R_{1}}\left[\begin{array}{lllll}1 & 2 & 1 & 2 & 1 \\ 0 & 0 & 1 & 1 & 0 \\ 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 1 & 1 & 0\end{array}\right]$
$\xrightarrow[R_{2} \leftrightarrow R_{3}, R_{4}^{*} \leftarrow R_{4}-R_{3}^{*}]{R_{1}^{*} \leftarrow R_{1}-R_{2}-R_{3}}\left[\begin{array}{ccccc}1 & 2 & 0 & 1 & 0 \\ 0 & 0 & 1 & 1 & 0 \\ 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 0\end{array}\right]$ is the RREF of A.
(b) $U=\operatorname{Col}(A)$, from (a), we see that columns $1,3,5$ are the pivot columns, and the columns 2 and 4 are free. Consequently , the three vectors of columns $1,3,5$ of $A:\left\{\left[\begin{array}{l}1 \\ 1 \\ 0 \\ 2\end{array}\right],\left[\begin{array}{l}1 \\ 2 \\ 0 \\ 3\end{array}\right],\left[\begin{array}{l}1 \\ 1 \\ 1 \\ 2\end{array}\right]\right\}$ is a basis of U.
(c) $\operatorname{Dim}(\operatorname{Col}(\mathrm{A}))=3$ and here are 4 column vectors of A, they are linearly dependent.

Problem 6: (28 points) Consider the linear system:

$$
\begin{array}{rlrl}
2 x+y & = & 0 \\
5 x+3 y & = & 1 \\
& -2 y+z & = & -4 .
\end{array}
$$

(a) Write this system in matrix form as $\mathrm{A} \vec{x}=\vec{b}$.
(b) Compute A^{-1}.
(Hint: you can check your answer by testing if $A^{-1} A=\mathbf{I}$.)
(c) Use your answer from part (b) to compute \vec{x}. Do not row-reduce to solve for \vec{x}.

Solution:

(a)

$$
\left[\begin{array}{ccc}
2 & 1 & 0 \tag{2}\\
5 & 3 & 0 \\
0 & -2 & 1
\end{array}\right]\left[\begin{array}{l}
x \\
y \\
z
\end{array}\right]=\left[\begin{array}{r}
0 \\
1 \\
-4
\end{array}\right]
$$

(b) To find A^{-1}, we augment A with the indentity matrix and reduce A to its RREF:

$$
\begin{aligned}
& {\left[\begin{array}{ccc|ccc}
2 & 1 & 0 & 1 & 0 & 0 \\
5 & 3 & 0 & 0 & 1 & 0 \\
0 & -2 & 1 & 0 & 0 & 1
\end{array}\right] \xrightarrow{R_{2}^{*}=R_{2}-2 R_{1}}\left[\begin{array}{ccc|ccc}
2 & 1 & 0 & 1 & 0 & 0 \\
1 & 1 & 0 & -2 & 1 & 0 \\
0 & -2 & 1 & 0 & 0 & 1
\end{array}\right] \xrightarrow{R_{1}^{*}=R_{1}-R_{2}}} \\
& {\left[\begin{array}{ccc|ccc}
1 & 0 & 0 & 3 & -1 & 0 \\
1 & 1 & 0 & -2 & 1 & 0 \\
0 & -2 & 1 & 0 & 0 & 1
\end{array}\right] \xrightarrow{R_{2}^{*}=R_{2}-R_{1}}\left[\begin{array}{ccc|ccc}
1 & 0 & 0 & 3 & -1 & 0 \\
0 & 1 & 0 & -5 & 2 & 0 \\
0 & -2 & 1 & 0 & 0 & 1
\end{array}\right] \xrightarrow{R_{3}^{*}=R_{3}+2 R_{2}}} \\
& {\left[\begin{array}{ccc|ccc}
1 & 0 & 0 & 3 & -1 & 0 \\
0 & 1 & 0 & -5 & 2 & 0 \\
0 & 0 & 1 & -10 & 4 & 1
\end{array}\right] .} \\
& \text { We see that } \mathrm{A}^{-1}=\left[\begin{array}{ccc}
3 & -1 & 0 \\
-5 & 2 & 0 \\
-10 & 4 & 1
\end{array}\right] .
\end{aligned}
$$

(c) We solve for \vec{x} by evaluating $\vec{x}=\mathrm{A}^{-1} \vec{b}$, and find that

$$
\left[\begin{array}{l}
x \tag{3}\\
y \\
z
\end{array}\right]=\left[\begin{array}{ccc}
3 & -1 & 0 \\
-5 & 2 & 0 \\
-10 & 4 & 1
\end{array}\right]\left[\begin{array}{r}
0 \\
1 \\
-4
\end{array}\right]=\left[\begin{array}{r}
-1 \\
2 \\
0
\end{array}\right]
$$

