APPM 2360: Midterm exam 2, SOLUTIONS October 19, 2016

Problem 1: (24 points) **True/False** (answer True if it is always true; otherwise answer False) No justification is needed.

- (a) The system of equations $\begin{bmatrix} a & b & c \\ d & e & f \end{bmatrix} \vec{x} = \begin{bmatrix} 1 \\ 2 \end{bmatrix}$ has at least one solution \vec{x} for any values of a, b, c, d, e, f.
- (b) The polynomials $\{x^2 + 1, x + 2, x^2 x 1\}$ form a basis for \mathbb{P}_2 .
- (c) If \vec{v}_i , i = 1, 2, ..., 5 are vectors, and $W = \text{Span}\{\vec{v}_1, \vec{v}_2, \vec{v}_3, \vec{v}_4, \vec{v}_5\}$, then the dimension of W is always 5.
- (d) The set of all 4×4 matrices that have 0 entries on the diagonal is a vector space.

Solution:

- (a) False. The equation may be inconsistent.
- (b) False. These polynomials are not linearly independent. Note that

$$x^{2} - x - 1 = (x^{2} + 1) - (x + 2).$$
(1)

- (c) False. The dimension of W can be 0,1,2,3,4 and 5.
- (d) True, it satisfies the closure properties under addition and scalar multiplication.

Problem 2: (24 points) **Short Answer** questions. A short justification is sufficient but *do not* simply answer True/False or Yes/No.

- (a) Are the vectors $[0, 1, 1], [0, 2, 0], [2, 0, 1] \in \mathbb{M}_{13}$ (the space of 1×3 matrices) linearly independent or linearly dependent?
- (b) Consider the set of all solutions to the differential equation

$$y'' + y = \sin(2t)$$

Is this set a vector space? (Remember to briefly justify your answer).

(c) Consider the set

$$W = \left\{ \begin{bmatrix} 1\\0\\0 \end{bmatrix}, \begin{bmatrix} 0\\1\\0 \end{bmatrix}, \begin{bmatrix} 1\\1\\k \end{bmatrix} \right\}.$$

- (i) For what value(s) of k does W constitute a basis for \mathbb{R}^3 ?
- (ii) If $\mathbb{V} = \text{Span}(W)$, for what value(s) of k is dim(\mathbb{V}) = 2?

Solution:

- (a) Yes, these are linearly independent. You can put these into a system of equations and check that the coefficient matrix is invertible (e.g., check the determinant is nonzero, or that you have 3 pivot columns after row-reducing).
- (b) No, since this is an *inhomogenous* linear ODE. For example, y(t) = 0 is not a solution, so it cannot be a vector space.
- (c) (i) $k \neq 0$ makes this set of three vectors linearly independent. The question wanted all possible values of k.
 - (ii) k = 0 makes this set linearly dependent (the third vector is the sum of the first two). In this case, only the first two vectors are needed to form a basis for V, giving it dimension 2.

Problem 3: (26 points) Consider the matrix

$$A = \left[\begin{array}{rrr} 2 & -1 & -1 \\ 0 & 1 & 0 \\ 2 & 1 & -1 \end{array} \right].$$

- (a) Write down the characteristic polynomial that determines eigenvalues of A.
- (b) Find the eigenvalues of A.

- (c) Find the eigenvector(s) of A for its **largest** eigenvalue. (only the LARGEST λ !)
- (d) What is the dimension of the eigenspace \mathbb{E}_{λ} for the eigenvalue in (c)?

Solution:

(a) Expanding along the second row, then

$$p(\lambda) = (1 - \lambda) \begin{vmatrix} 2 - \lambda & -1 \\ 2 & -1 - \lambda \end{vmatrix}$$
$$= (1 - \lambda)(\lambda^2 - \lambda) = -\lambda(1 - \lambda)^2$$

- (b) $p(\lambda) = -(\lambda 1)^2(\lambda 0)$. So the eigenvalues are $\lambda_1 = 1$ and $\lambda_2 = 1$ and $\lambda_3 = 0$ (you should list the 1 eigenvalue twice, or make specific mention that it has algebraic multiplicity 2).
- (c) To find the eigenvector(s) for $\lambda = 1$, we solve

$$(A-I)\vec{v} = 0$$

which gives the augmented matrix

$$\left[\begin{array}{rrrr|rrr} 1 & -1 & -1 & 0 \\ 0 & 0 & 0 & 0 \\ 2 & 1 & -2 & 0 \end{array}\right]$$

As the second row is zero and the last row is independent of the first there is going to be one free variable. Flipping row 2 and 3 and subtracting twice the first row from the (new) 2nd row gives

$$\left[\begin{array}{rrrr|rrr} 1 & -1 & -1 & 0 \\ 0 & 3 & 0 & 0 \\ 0 & 0 & 0 & 0 \end{array}\right]$$

which implies that the eigenvector solves $v_3 = s$ (arbitrary), $v_2 = 0$, and $v_1 = v_3 = s$, so we have

$$\vec{v} = \begin{bmatrix} 1\\0\\1 \end{bmatrix}$$

Note: any other non-zero value of s is fine here.

(d) The dimension of \mathbb{E}_1 is 1 since there is one eigenvector for $\lambda = 1$. (Note that this matrix has a deficiency of eigenvectors; it is not diagonalizable).

Problem 4: (24 points)

(a) Consider the following two matrices:

$$A = \begin{bmatrix} 1 & 4 & 7 & 9 \\ 0 & 2 & 11 & 12 \\ 0 & 0 & 1 & 9 \\ 0 & 0 & 0 & 2 \end{bmatrix}, \quad B = \begin{bmatrix} 1 & 0 & 1 \\ 0 & 1 & 1 \\ 0 & 2 & 2 \end{bmatrix}$$

For each matrix, indicate 1) its rank and 2) whether its inverse exists. Do not calculate the inverse; only indicate whether or not it exists. In each case, explain your answer and/or show your work.

Solution: Note that since A is upper triangular, and the diagonal elements are nonzero, it has four nonzero pivots and so has rank 4 (indeed |A| = 4 as well), thus it has an inverse. B has the RREF

$$\begin{bmatrix} 1 & 0 & 1 \\ 0 & 1 & 1 \\ 0 & 0 & 0 \end{bmatrix}$$

so it has rank 2. Since this is not full rank, it has no inverse.

(b) Consider the following system of equations 0

$$\begin{bmatrix} 1 & 0 & 2 \\ 0 & 1 & 3 \\ 0 & 2 & 6 \end{bmatrix} \vec{x} = \begin{bmatrix} 2 \\ -1 \\ k \end{bmatrix}.$$

- (i) For which value(s) of k is the system consistent?
- (ii) For a value of k for which the system is consistent, determine at least **two** solutions.

Solution:

(a) The matrix is not invertible (not full rank), so there is not always a solution. The 3rd equation is twice the 2nd equation, so we need k = -2. To see it more systematically, put into RREF

$$\begin{bmatrix} 1 & 0 & 2 & | & 2 \\ 0 & 1 & 3 & | & -1 \\ 0 & 2 & 6 & | & k \end{bmatrix} \xrightarrow{R_3 \leftarrow R_3 - 2R_2} \begin{bmatrix} 1 & 0 & 2 & | & 2 \\ 0 & 1 & 3 & | & -1 \\ 0 & 0 & 0 & | & k+2 \end{bmatrix}$$

so this last equation is only possible if k + 2 = 0, i.e., k = -2.

(b) For k = -2, we get that x_3 is a free variable, so call this $x_3 = t$ for any $t \in \mathbb{R}$. Then the first equation requires $x_1 + 2t = -2$ and the next equation requires $x_2 + 3t = -1$, so our general solution is $\vec{x} = \begin{bmatrix} 2-2t \\ -1-3t \end{bmatrix}$. Plug in any values of t to find solutions, e.g., t = 1

general solution is
$$\vec{x} = \begin{bmatrix} -1 - 3t \\ t \end{bmatrix}$$
. Plug in any values of t to find solutions, e.g., $t = \begin{bmatrix} 0 \\ -4 \\ 1 \end{bmatrix}$; and $t = 0$ gives $\begin{bmatrix} 2 \\ -1 \\ 0 \end{bmatrix}$.

Problem 5: (24 points) Consider the matrix
$$A = \begin{bmatrix} 1 & 2 & 1 & 2 & 1 \\ 1 & 2 & 2 & 3 & 1 \\ 0 & 0 & 0 & 0 & 1 \\ 2 & 4 & 3 & 5 & 2 \end{bmatrix}$$

- (a) Find the RREF of A.
- (b) Find a basis for

$$\mathbb{U} = \operatorname{Span} \left\{ \begin{bmatrix} 1\\1\\0\\2 \end{bmatrix}, \begin{bmatrix} 2\\2\\0\\4 \end{bmatrix}, \begin{bmatrix} 1\\2\\0\\3 \end{bmatrix}, \begin{bmatrix} 2\\3\\0\\5 \end{bmatrix}, \begin{bmatrix} 1\\1\\1\\2 \end{bmatrix} \right\}.$$

(Notice these are the column vectors of the matrix A.)

(c) Are the vectors
$$\vec{v}_1 = \begin{bmatrix} 1\\1\\0\\2 \end{bmatrix}$$
, $\vec{v}_2 = \begin{bmatrix} 1\\1\\1\\2 \end{bmatrix}$, $\vec{v}_3 = \begin{bmatrix} 1\\2\\0\\3 \end{bmatrix}$, and $\vec{v}_4 = \begin{bmatrix} 2\\3\\0\\5 \end{bmatrix}$ linearly independent?

Explain. (Hint: they are column vectors of A).

Solution:

(a)
$$A = \begin{bmatrix} 1 & 2 & 1 & 2 & 1 \\ 1 & 2 & 2 & 3 & 1 \\ 0 & 0 & 0 & 0 & 1 \\ 2 & 4 & 3 & 5 & 2 \end{bmatrix} \xrightarrow{R_2 \leftarrow R_2 - R_1} \begin{bmatrix} 1 & 2 & 1 & 2 & 1 \\ 0 & 0 & 1 & 1 & 0 \\ 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 1 & 1 & 0 \end{bmatrix}$$
$$\xrightarrow{R_1^* \leftarrow R_1 - R_2 - R_3} \begin{bmatrix} 1 & 2 & 0 & 1 & 0 \\ 0 & 0 & 1 & 1 & 0 \\ 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 1 \end{bmatrix} \text{ is the RREF of } A.$$

(b) U = Col(A), from (a), we see that columns 1, 3, 5 are the pivot columns, and the columns 2

and 4 are free. Consequently , the three vectors of columns 1, 3, 5 of A:

is a basis of U.

(c) Dim(Col(A))=3 and here are 4 column vectors of A, they are **linearly dependent**.

Problem 6: (28 points) Consider the linear system:

- (a) Write this system in matrix form as $A\vec{x} = \vec{b}$.
- (b) Compute A^{-1} . (Hint: you can check your answer by testing if $A^{-1}A = \mathbf{I}$.)
- (c) Use your answer from part (b) to compute \vec{x} . Do not row-reduce to solve for \vec{x} .

Solution:

(a)

$$\begin{bmatrix} 2 & 1 & 0 \\ 5 & 3 & 0 \\ 0 & -2 & 1 \end{bmatrix} \begin{bmatrix} x \\ y \\ z \end{bmatrix} = \begin{bmatrix} 0 \\ 1 \\ -4 \end{bmatrix}$$
(2)

(b) To find A^{-1} , we augment A with the indentity matrix and reduce A to its RREF:

$$\begin{bmatrix} 2 & 1 & 0 & | & 1 & 0 & 0 \\ 5 & 3 & 0 & | & 0 & 1 & 0 \\ 0 & -2 & 1 & | & 0 & 0 & 1 \end{bmatrix} \xrightarrow{R_2^* = R_2 - 2R_1} \begin{bmatrix} 2 & 1 & 0 & | & 1 & 0 & 0 \\ 1 & 1 & 0 & | & -2 & 1 & 0 \\ 0 & -2 & 1 & | & 0 & 0 & 1 \end{bmatrix} \xrightarrow{R_2^* = R_2 - R_1} \begin{bmatrix} 1 & 0 & 0 & | & 3 & -1 & 0 \\ 0 & 1 & 0 & | & -5 & 2 & 0 \\ 0 & -2 & 1 & | & 0 & 0 & 1 \end{bmatrix} \xrightarrow{R_2^* = R_2 - R_1} \begin{bmatrix} 1 & 0 & 0 & | & 3 & -1 & 0 \\ 0 & 1 & 0 & | & -5 & 2 & 0 \\ 0 & 0 & 1 & | & -10 & 4 & 1 \end{bmatrix}.$$

We see that $A^{-1} = \begin{bmatrix} 3 & -1 & 0 \\ -5 & 2 & 0 \\ -10 & 4 & 1 \end{bmatrix}.$

(c) We solve for \vec{x} by evaluating $\vec{x} = \mathbf{A}^{-1}\vec{b}$, and find that

$$\begin{bmatrix} x\\ y\\ z \end{bmatrix} = \begin{bmatrix} 3 & -1 & 0\\ -5 & 2 & 0\\ -10 & 4 & 1 \end{bmatrix} \begin{bmatrix} 0\\ 1\\ -4 \end{bmatrix} = \begin{bmatrix} -1\\ 2\\ 0 \end{bmatrix}$$
(3)