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Abstract. This paper presents a randomized quaternion singular value decomposition (QSVD) algorithm for5
low-rank matrix approximation problems, which are widely used in color face recognition, video compression, and6
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the known Lanczos-based partial QSVD and a quaternion version of fast frequent directions algorithm.14
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1. Introduction. Low-rank approximations of quaternion matrices play an important role18

in color image processing area [16, 17], in which color images are represented by pure quaternion19

matrices. Based on the color principal component analysis [43], the optimal rank-k approxima-20

tions preserve the main features and the important low frequency information of original color21

image samples. The core work of generating low-rank approximations is to compute the dominant22

quaternion singular value decomposition (QSVD) triplets (i.e., left singular vectors, singular values23

and right singular vectors). However, there are still few efficient algorithms to do this work when24

quaternion matrices are of large-scale sizes. No rigorous error analysis of computed approxima-25

tions have also been given in the literature. In this paper, we present a new randomized QSVD26

algorithm and propose important theoretical results about the feasibility and the reliability of the27

algorithm.28

In these years, quaternions [12] and quaternion matrices [41] have been more and more attrac-29

tive in many research fields such as signal processing [6], image data analysis [2, 19], and machine30

learning [28, 43]. Because of non-commutative multiplication of quaternions, quaternion matrix31

computations contain more abundant challenging topics than real or complex matrix computa-32

tions. The algorithms designed for quaternion matrices are also feasible for the real or complex33

case, but the converse is not always true. As we are concerned on, QSVD triplets can be achieved34

in three totally different ways. The first one is to call the svd command from Quaternion toolbox35

for Matlab (QTFM) developed by Sangwine and Bihan in 2005. For the principle of the algo-36

rithm, we refer to [32]. The codes in QTFM are based on quaternion arithmetic operations and37
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is less efficient for large matrices. The second one is to use the real structure-preserving QSVD38

method [38]. Its main idea is to perform real operations on the real counterparts of quaternion39

matrices with structure preserving scheme. In practical implementations, only the first block row40

or column of the real counterpart is explicitly stored and updated, and the other subblocks are41

implicitly formulated with the aid of the algebraic symmetry structure. The real matrix-matrix42

multiplication-based BLAS-3 operations make the computation more efficient. The concept of43

structure-preserving was firstly proposed to solve quaternion eigenvalue problem in [13], and then44

extended to the computations of quaternion LU [22, 37] and QR [21] factorizations. Recently,45

Jia et al. [14] developed a new structure-preserving quaternion QR algorithm for eigenvalue prob-46

lems of general quaternion matrices, by constructing feasible frameworks of calculation for new47

quaternion Householder reflections and generalized Givens transformations. For more issues about48

structure-preserving algorithms, we refer to two monographs [38] by Wei et al. and [18] by Jia.49

The above two ways are based on the truncation of the full QSVD and the computational cost is50

expensive in computing all singular values and corresponding left and right singular vectors. Thus51

they are not feasible for large-scale quaternion matrices. Jia et al. [15] proposed a promising iter-52

ative algorithm to compute dominant QSVD triplets, based on the Lanczos bidiagonalization [8]53

with reorthogonalization and thick-restart techniques. This method is referred to as the lansvdQ54

method. The superiority of lansvdQ method over the full QSVD was revealed in [15], through a55

number of practical applications such as color face recognition, video compression and color image56

completion. When the target rank k increases, the matrix-vector products at each iteration of57

lansvdQ make the computational cost increase. Is there any method with lower computational cost58

for the quaternion low-rank approximation problem?59

In the past decade, randomized algorithms for computing approximations of real matrices have60

been receiving more and more attention. Randomized projection and randomized sampling are two61

commonly used techniques to deal with large-scale problems efficiently. Randomized projection62

combines rows or columns together to produce a small sketch of M ∈ Rm×n(m ≥ n) [33]. Possible63

techniques include subspace iterations [10], subspace embedding (SpEmb) [27], frequent directions64

(FD) [7] and etc. Recently, Teng and Chu [34] implanted SpEmb in FD to develop a fast frequent65

direction (SpFD) algorithm. Through the experimental results on world datasets and applications66

in network analysis, the superiority of SpFD over FD is displayed, not only in the efficiency, but67

also in the effectiveness.68

Randomized sampling finds a small subset of rows or columns based on a pre-assigned prob-69

ability distribution, say, by pre-multiplying M on an n × ` (` � n) random Gaussian matrix Ω,70

and identifies a low-dimensional approximate range subspace of M , after which a small-size matrix71

approximation is also obtained. The idea of a randomized sampling procedure can be traced to a72

2006 technical report of paper [26], and later analyzed and elaborated in [5,10,11,25,31,34,40,42].73

They are computationally efficient for large-scale problems and adapt to the case that the nu-74

merical rank is known or can be estimated in advance. When the singular values have relatively75

fast decay rate, the algorithm is inherently stable. For singular values with slow decay rate, the76

randomized algorithm with power scheme will enhance the stability of the algorithm.77

In this paper we consider the randomized sampling algorithm for quaternion low-rank matrix78

approximations. The targeted randomized QSVD algorithm is expected to have lower compu-79

tational cost and to be appropriate for choosing a small number of dominant QSVD triplets of80

large-scale quaternion matrices. It seems natural to utilize the research framework in [11] and gen-81

eralize the real randomized SVD algorithm to quaternion matrices. Unfortunately, the theoretical82

analysis is long and arduous. It involves doses of statistics related to quaternion variables and83

several difficulties block us to go further.84

• What kind of quaternion distribution is appropriate for the randomized QSVD algorithm?85

The proper quaternion distribution should be invariant under unitary transformations,86

which will bring convenience for approximation error analysis of the proposed algorithm.87
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However, few studies have been seen on the probability distribution of quaternion variables88

in the literature.89

• What are the distributions of the norms of the pseudoinverse Ω† of quaternion random90

Gaussian matrix Ω? Due to the non-commutative multiplication of quaternions, quater-91

nion determinant and integrals could not be defined similar to the real case. Hence, real92

probability theories could not be directly used to evaluate the norms of quaternion random93

Gaussian matrices.94

• What are statistical evaluations of spectral norms of Ω and its real counterpart? The real95

counter part ΥΩ (see (2.1)) is a non-Gaussian random matrix. It is necessary to develop96

novel techniques to evaluate the expectation and probability bounds of ‖Ω‖2 and its scaled97

norms.98

Based on the investigations on key features of Ω, we will give expectation and deviation bounds99

for approximation errors of the quaternion randomized SVD algorithm. To the best of our knowl-100

edge, these results are new and no developments have been made on the proposed algorithm and101

theories about quaternion matrix approximation problems. With high probability, the theoretical102

results show that the low rank approximations can be computed quickly for quaternion matrices103

with rapidly decaying singular values. Through the numerical experiments, the superiority of the104

proposed algorithm will be displayed, in comparison with the quaternion Lanczos method and a105

quaternion version of SpFD [34].106

The paper is organized as follows. In Section 2, we review some preliminary results about107

quaternion matrices and randomized SVD for real matrices. The randomized QSVD algorithm108

and implement details for low-rank approximation problems will be studied in Section 3. In109

Section 4, the theoretical analysis is provided for the approximation errors. In Section 5, we test110

the theories and numerical behaviors of the proposed algorithms through several experiments and111

show their efficiency over Lanczos-based partial QSVD algorithm and quaternion SpFD for color112

face recognition problems.113

Throughout this paper, we denote by Rm×n and Qm×n the spaces of all m × n real and114

quaternion matrices, respectively. The norm ‖·‖a denotes either the spectral norm or the Frobenius115

norm. For quaternion matrix A ∈ Qm×n, A† is the pseudoinverse of A, and R(A) represents the116

column range space of A. tr(·) denotes the trace of a quaternion or real square matrix, and117

etr(·)=exp(tr(·)) means the exponential operation of the trace. Let P{·} denote the probability of118

an event and E(·) denote the expectation of a random variable. For differentials dy1,dy2 of real119

random variables y1, y2, dy1∧dy2 denotes the non-commutative exterior product of dy1,dy2, under120

which dy1 ∧ dy2 = −dy2 ∧ dy1 and dy1 ∧ dy1 = 0.121

2. Preliminaries. In this section, we first introduce some basic information of quaternion122

matrices and quaternion SVD. The basic randomized SVD for real matrices is described thereafter.123

2.1. Quaternion matrix and QSVD. The quaternion skew-field Q is an associative but124

non-commutative algebra of rank four over R, and any quaternion q ∈ Q has one real part and125

three imaginary parts given by q = q0 + q1i + q2j + q3k, where q0, q1, q2, q3 ∈ R, and i, j and k are126

three imaginary units satisfying i2 = j2 = k2 = ijk = −1. The conjugate and modulus of q are127

defined by q∗ = q0 − q1i− q2j− q3k and |q| =
√
q2
0 + q2

1 + q2
2 + q2

3 , respectively.128

For any quaternion matrices P = P0 +P1i +P2j +P3k ∈ Qm×n, Q = Q0 +Q1i +Q2j +Q3k ∈129

Qm×n, denote Q∗ = QT0 −QT1 i−QT2 j−QT3 k and the sum of P,Q as P + Q = (P0 +Q0) + (P1 +130

Q1)i + (P2 + Q2)j + (P3 + Q3)k, and for quaternion matrix S ∈ Qn×`, the multiplication QS is131

given by132

(Q0S0 −Q1S1 −Q2S2 −Q3S3) + (Q0S1 +Q1S0 +Q2S3 −Q3S2)i +133

(Q0S2 −Q1S3 +Q2S0 +Q3S1)j + (Q0S3 +Q1S2 −Q2S1 +Q3S0)k.134
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For Q ∈ Qm×n, define the real counterpart ΥQ and the column representation Qc as135

(2.1) ΥQ =


Q0 −Q1 −Q2 −Q3

Q1 Q0 −Q3 Q2

Q2 Q3 Q0 −Q1

Q3 −Q2 Q1 Q0

 , Qc =


Q0

Q1

Q2

Q3

 .136

Note that ΥQ has special real algebraic structure that is preserved under the following operations137

[13, 21]:138

(2.2) Υk1P+k2Q = k1ΥP + k2ΥQ (k1, k2 ∈ R), ΥQ∗ = ΥT
Q, ΥQS = ΥQΥS.139

For determinants of quaternion square matrices, a variety of definitions have emerged in terms140

of the complex and real counterparts to avoid the difficulties caused by the non-commutativity141

of quaternion multiplications; see [20, 30, 41] and reference therein. However these definitions do142

not coincide with the standard determinant of a real matrix. In this paper, we only consider the143

determinant of Hermitian quaternion matrices, which was defined by Li [20] as144

(2.3) det(Q) = λ1λ2 · · ·λn, Q ∈ Qn×n is Hermitian,145

where λ1, . . . , λn are eigenvalues of Q, and they are proved to be real [13, 20]. This definition146

in (2.3) is consistent with the determinant of a real symmetric matrix, but does not adapt to147

the quaternion non-Hermitian matrices, since a quaternion non-Hermitian matrix has significantly148

different properties in its left and right eigenvalues, and there is no very close relation between149

left and right eigenvalues [41]. When Q is Hermitian, the left and right eigenvalues are coincided150

to be the same real value. Throughout this paper we use det(Q) to distinguish it from the151

real determinant symbol “det”. Moreover, if Q is positive semidefinite so that λi ≥ 0, then the152

quaternion determinant det(Q) can be represented in terms of a determinant of a real matrix [20]153

as154

(2.4) det(Q) = [det(ΥQ)]
1/4

, Q is Hermitian and positive semidefinite.155

Definition 2.1. The spectral norm (2-norm) of a quaternion vector x = [xi] ∈ Qn is ‖x‖2 :=156 √∑
i |xi|2. The 2-norm of a quaternion matrix A = [aij ] ∈ Qm×n are ‖A‖2 := maxσ(A), where157

σ(A) is the set of singular values of A. The Frobenius norm of A is ‖A‖F =
(∑
i,j

|aij |2
)1/2

=158

[tr(A∗A)]
1/2

.159

QSVD was firstly proposed in [41, Theorem 7.2] and the partial QSVD was presented in [15].160

Lemma 2.2 (QSVD [41]). Let A ∈ Qm×n. Then there exist two quaternion unitary matrices161

U ∈ Qm×m and V ∈ Qn×n such that U∗AV = Σ, where Σ = diag(σ1, σ2, . . . , σl) ∈ Rm×n with162

σi ≥ 0 denoting the i-th largest singular value of A and l = min(m,n).163

From [15], the optimal rank-k approximation of A is given by Ak = UkΣkV
∗
k, where Uk and Vk are164

respectively submatrices of U and V by taking their first k columns, and Σk = diag(σ1, . . . , σk).165

Furthermore, by the real counterpart of QSVD: ΥT
UΥAΥV = ΥΣ, where ΥU and ΥV are real166

orthogonal matrices, and ΥΣ = diag(Σ,Σ,Σ,Σ). As a result, spectral and Frobenius norms of a167

quaternion matrix can be represented by the ones of real matrices as below168

(2.5) ‖A‖2 = ‖ΥA‖2, ‖A‖F =
1

2
‖ΥA‖F = ‖Ac‖F .169

Moreover, for consistent quaternion matrices A and B, it is obvious that170

(2.6) ‖AB‖F ≤ ‖A‖2‖B‖F , ‖AB‖F ≤ ‖A‖F ‖B‖2.171
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2.2. Real randomized SVD and low-rank approximation. Given a real matrix M ∈
Rm×n, randomized sampling methods [11,23,25,26,39] apply the input matrix M onto a diverse set
of random sample vectors Ω = [ω1 . . . ω`], expecting MΩ to capture the main information of the
range space of M and to maintain safe approximation error bounds with high probability. In [11],
a random Gaussian matrix Ω is used. By applying M to Ω, and then computing the orthogonormal
basis Q of the range space of MΩ via skinny QR factorization in Matlab:

Ω = randn(n, `), [Q,∼] = qr(Y, 0), where Y = MΩ,

one can get an approximate orthogonal range space of M . Here ` = k + p and p is a small
oversampling factor (say, p = 5). In this case, the matrix M is approximated by M ≈ QN, where
QQT is an orthogonal projector and the matrix N := QTM is of small size ` × n. The problem
then reduces to compute the full SVD of N as N = Û ŜV̂ T . Therefore M ≈ QN = QÛŜV̂ T , and
once a suitable rank k has been chosen based on the decay of Ŝ, the low-rank SVD factors can be
determined as

Ūk = QÛ(:, 1 : k), S̄k = Ŝ(1 : k, 1 : k), and V̄k = V̂ (:, 1 : k)

such that Mk ≈ ŪkS̄kV̄ Tk . We refer to the above method as the randomized SVD.172

The idea is simple, but whether the projection QQT can capture the range of M well depends173

not only on the property of random matrix, but also on the singular values si of the matrix M we174

are dealing with. It was shown in [11, Theorems 10.5 and 10.6] that for p ≥ 2, the expectation of175

the approximation error satisfies176

(2.7)

E‖(I −QQT )M‖2 ≤
(

1 +
√

k
p−1

)
sk+1 + e

√
k+p
p

(min(m,n)∑
j=k+1

s2
j

)1/2

,

E‖(I −QQT )M‖F ≤
(

1 + k
p−1

)1/2(min(m,n)∑
j=k+1

s2
j

)1/2

.

177

It is observed that when the singular values of M decay very slowly, the method fails to work178

well, because the singular vectors associated with the tail singular values capture a significant179

fraction of the range of M , and the range of Y = MΩ as well. Power scheme can be used to enhance180

the effect of the approximation, i.e., by applying power operation to generate Y = (MMT )qMΩ,181

where (MMT )qM has the same singular space as M , but with a faster decay rate in its singular182

values.183

3. Quaternion randomized SVD. In this section, we develop the randomized QSVD184

(randsvdQ) algorithm in Algorithm 3.1 and present some measures to improve the efficiency of185

the algorithm in practical implementations.186

How to choose the random test matrix in the algorithm? Consider a simple case about the187

rank-1 approximation A1 = σ1u1v
∗
1 of the quaternion matrix A. It is easy to prove that {y∗, z∗} =188

{u1,v1} is the maximizer of max
‖y‖2=‖z‖2=1

|y∗Az|, and |y∗z̃| = |y∗Az| approximates σ1 for y = u1189

and z̃ = Av1 ∈ R(A), in which the columns of A are spanned with quaternion coefficients. In190

order to capture the main information of R(A) spanned by dominant left singular vectors of A, it191

is natural to use a set of n× 1 quaternion random vectors Ω = [ω(1) . . . ω(`)] to span the columns192

of A, with random standard real Gaussian matrices as the four parts of Ω. That means the n× `193

quaternion random test matrix194

(3.1) Ω = Ω0 + Ω1i + Ω2j + Ω3k,195

where the entries of Ω0,Ω1,Ω2,Ω3 are random and independently drawn from the N(0, 1)-normal196

distribution. The detailed description of randomized QSVD is given in Algorithm 3.1.197
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Algorithm 3.1 (randsvdQ) Randomized QSVD with fixed rank

(1) Given A ∈ Qm×n, choose target rank k, oversampling parameter p and the power scheme
parameter q. Set ` = k + p, and draw an n× ` quaternion random test matrix Ω as in (3.1).
(2) Construct Y0 = AΩ and for i = 1, 2, . . . , q, compute

Ŷi = A∗Yi−1 and Yi = AŶi.

(3) Construct an m× ` quaternion orthonormal basis Q for the range of Yq by the quaternion QR
decomposition and generate B = Q∗A.
(4) Compute the QSVD of a small-size matrix B: B = ŨΣ̃Ṽ∗.

(5) Form the rank-k approximation of A: Â
(q)
k = ÛkΣ̂kV̂

∗
k, where

Ûk = QŨ(:, 1 : k), Σ̂k = Σ̃(1 : k, 1 : k), V̂k = Ṽ(:, 1 : k).

To implement Algorithm 3.1 efficiently, we recommend fast structure-preserving quaternion
Householder QR [14, 21] and QSVD algorithms [21, 38]. Based on structure-preserving properties
(2.2) of the real counterpart of a quaternion matrix, the essence of fast structure-preserving al-
gorithm is to store the four parts Q0, Q1, Q2, Q3 of a quaternion matrix Q only. When the left
(or right) quaternion matrix transformation Tl (or Tr) is applied on Q, it is equivalent to imple-
menting the real matrix multiplication ΥTl

ΥQ (or ΥQΥTr
). In order to reduce the computational

cost, only the first block column (or row) of ΥQ is updated and stored. Other blocks in the up-
dated matrix are not explicitly stored and formed, and they can be determined according to the
real symmetry structure. For example, in Step 2 of Algorithm 3.1, the four parts of quaternion
matrices Y0, Ŷi and Yi can be found from the computations of matrices

(Y0)c = ΥAΩc,
(
Ŷi

)
c

= ΥT
A(Yi−1)c,

(
Yi

)
c

= ΥA

(
Ŷi

)
c
,

respectively, and in Step 3, the four parts of quaternion matrix B can be found from Bc = ΥT
QAc.198

Note that the computations of (Y0)c := ΥAΩc and the quaternion matrix multiplication Y0 = AΩ199

have the same real flops, while the former utilizes BLAS-3 based matrix-matrix operations better,200

and hence leads to efficient computations.201

Once Yq is obtained, the fast structure-preserving quaternion Householder QR algorithm [21]
can be applied to get the orthonormal basis matrix Q. Here the quaternion Householder transfor-
mation H to reduce a vector u ∈ Qs into Hu = ae1 in the QR process takes the form

H = Is − 2vv∗, with v =
u− ae1

‖u− ae1‖2
, a =

{
− u1

|u1|‖u‖2, u1 6= 0,

−‖u‖2, otherwise,

where e1 is the first column of the identity matrix Is.202

After computing B = Q∗A in Step 3, the structure-preserving QSVD [38] of B first factorizes203

B into a real bidiagonal matrix B̃ [21], with the help of Golub and Reinsch’s idea [9] and quaternion204

Householder transformation H0 [21]:205

(3.2) H0u := diag

(
a∗

|a|
, Is−1

)
Hu = |a|e1 = ‖u‖2e1.206

Afterwards, the standard SVD of the real matrix B̃ completes the QSVD algorithm.207

Remark 3.1. The basis matrix Q in the algorithm is designed to approximate the left dominant208

singular subspace of A. To get Q, the structure-preserving quaternion Householder QR has better209
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numerical stability through our numerous experiments, but with more computational cost since210

all columns of a unitary matrix are computed. Structure-preserving quaternion modified Gram-211

Schmidt (QMGS) [38, Chp. 2.4.3] is an economical alternative for getting the thin orthonormal212

factor Q, but might lose the accuracy during the orthogonalization process when the input matrix213

has relatively small singular values. However, when we are dealing with low-rank approximation214

of a large input matrix, only a small number of dominant SVD triplets are taken into account, and215

QMGS sometimes is sufficient to get an orthonormal basis with expected accuracy (See Example216

5.2 in Section 5).217

Remark 3.2. If ` is much smaller than n, i.e., B is a “short-and-wide” matrix, the direct218

application of QSVD on B might lead to large computational cost. Alternatively, we recommend219

implementing the QMGS of B∗ as220

(3.3) B∗ = Q̂1R̂1, for Q̂1 ∈ Qn×`, R̂1 ∈ Q`×`,221

and then computing the QSVD of the `×` quaternion matrix R̂1 as R̂1 = T̂1Ŝ1Ẑ
∗
1, from which the222

QSVD of B is given by B = ŨΣ̃Ṽ∗ for Ũ = Ẑ1, Σ̃ = Ŝ1 and Ṽ = Q̂1T̂1. We call the corresponding223

method the preconditioned randomized QSVD (prandsvdQ).224

Remark 3.3. If A is Hermitian, it can be approximated as [11, (5.13)]:225

(3.4) A ≈ QQ∗AQQ∗.226

Then we form the matrix B = Q∗AQ, and use the structure-preserving eigQ algorithm in [13] to227

compute the eigen-decomposition of B. The corresponding algorithm is referred to as the randeigQ228

algorithm in the context.229

Note that both randeigQ and prandsvdQ reduce a large n×n problem into a smaller `×` problem.230

The essence of randeigQ computes the eigen-decomposition of a Hermitian matrix Q∗AQ, while231

the prandsvdQ algorithm of A computes the QSVD of R̂1 = Q̂∗1AQ. For large problems with232

` � n, the cost of the two randomized algorithms is dominated by the quaternion QR procedure233

for getting Q and Q̂1, and prandsvdQ will cost more CPU time for the extra computation of Q̂1,234

but might be more accurate in estimating the eigenvalues of A. That is because the columns of Q̂1235

span the range space R(AQ), and it is exactly R(A2Ω), while Q is the low-rank basis of R(AΩ),236

therefore R(Q̂1) might have a better approximation of the left dominant singular subspace than237

R(Q). We will compare the numerical behaviors of the two algorithms in Section 5.238

For the error approximation of randeigQ, if for some parameter ε, ‖(Im −QQ∗)A‖a ≤ ε, then239

by [11, (5.10)], the error of approximating A is given by ‖A−QQ∗AQQ∗‖a ≤ 2ε, where ε will be240

evaluated in next section.241

Remark 3.4. When the power scheme is not used in Algorithm 3.1 (i.e. q = 0), note that the
input matrix A in Algorithm 3.1 is revisited. However, in some circumstance, the matrix is too
large to be stored. Using a similar technique to [4], we develop a method that requires just one
pass over the matrix. For the input Hermitian matrix A, according to (3.4) and B = Q∗AQ, the
sample matrix

Y = AΩ ≈ QQ∗AQQ∗Ω = QBQ∗Ω,

and the approximation of the matrix B could be obtained by solving BQ∗Ω ≈ Q∗Y.242

If A is not Hermitian, analogue to [11, (5.14)-(5.15)], the single-pass algorithm can be con-243

structed based on the relation A ≈ QQ∗AQ̃Q̃∗, where Q̃ is the low-rank basis of R(A∗) by244

applying A∗ on a random test matrix Ω̃. The matrix B = Q∗AQ̃ can be approximated by find-245

ing a minimum-residual solution to the system of relations BQ̃∗Ω = Q∗Y, B∗Q∗Ω̃ = Q̃∗Ỹ for246

Y = AΩ and Ỹ = A∗Ω̃.247
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4. Error analysis. The error analysis of Algorithm 3.1 consists of two parts, including the248

expected values of approximation errors ‖(I −QQ∗)A‖a = ‖Â(q)
k+p −A‖a in spectral or Frobenius249

norm, and the probability bounds of a large deviation as well. The argument relies on special250

statistical properties of quaternion test matrix Ω. Specially, we need to evaluate the Frobenius251

and spectral norms of Ω and Ω†.252

Our theories are established based on the framework of [11]. To start the analysis, we require253

to use the information of quaternion normal distributions, chi-squared and Wishart distributions.254

Some of results are provided in the literature, e.g. [20, 24], while some other information needs a255

rather lengthy deduction. In Section 4.1, we first summarize the main results in Theorems 4.1-4.3256

to show the properties of quaternion randomized algorithm. After investigating the statistical257

properties of quaternion distributions in Section 4.2, we will give the detailed proofs of Theorems258

4.1-4.3 in Section 4.3.259

4.1. Main results.260

Theorem 4.1. (Average Frobenius error of the randsvdQ algorithm) Let the QSVD of the m×n
(m ≥ n) quaternion matrix A be

A = UΣV∗ = U

[
Σ1 0
0 Σ2

] [
V∗1
V∗2

]
, Σ1 ∈ Rk×k, V1 ∈ Qn×k,

where the singular value matrix Σ = diag(σ1, σ2, . . . , σn) with σ1 ≥ σ2 ≥ · · · ≥ σn ≥ 0, k is the
target rank. For oversampling parameter p ≥ 1, let q = 0, ` = k + p ≤ n and the sample matrix
Y0 = AΩ, where Ω is an n × ` quaternion random test matrix as in (3.1), and Ω1 = V∗1Ω is
assumed to have full row rank, then the expected approximation error for the rank-(k + p) matrix

Â
(0)
k+p via the power scheme-free randsvdQ algorithm satisfies

E‖Â(0)
k+p −A‖F ≤

(
1 +

4k

4p+ 2

)1/2
∑
j>k

σ2
j

1/2

.

Theorem 4.2. (Average spectral error of the randsvdQ algorithm) With the notations in The-261

orem 4.1, the expected spectral norm of the approximation error in the power scheme-free algorithm262

satisfies263

(4.1) E‖Â(0)
k+p −A‖2 ≤

(
1 + 3

√
k

4p+ 2

)
σk+1 +

3e
√

4k + 4p+ 2

2p+ 2

(∑
j>k

σ2
j

)1/2

.264

If q > 0 and the power scheme is used, then for the rank-(k + p) matrix Â
(q)
k+p, the spectral error

satisfies

E‖Â(q)
k+p −A‖2 ≤

(1 + 3

√
k

4p+ 2

)
σ2q+1
k+1 +

3e
√

4k + 4p+ 2

2p+ 2

∑
j>k

σ
2(2q+1)
j

1/2


1/(2q+1)

.

Theorem 4.3. (Deviation bound for approximation errors of the randsvdQ algorithm) With265

the notations in Theorem 4.1, we have the following estimate for the Frobenius error266

(4.2) ‖Â(0)
k+p −A‖F ≤

(
1 + t

√
3k

p+ 1

)(∑
j>k

σ2
j

)1/2

+ ut
e
√

4k + 4p+ 2

4p+ 4
σk+1,267
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except with the probability 2t−4p + e−u
2/2. For the spectral error,268

(4.3) ‖Â(0)
k+p −A‖2 ≤

(
1 +

3t

2

√
3k

p+ 1
+ utηk,p

)
σk+1 + 3tηk,p

∑
j>k

σ2
j

1/2

,269

except with the probability 2t−4p + e−u
2/2, in which ηk,p = e

√
4k+4p+2
4p+4 .270

Theorems 4.1-4.3 reveal that the performance of the randomized algorithm depends strongly271

on the properties of singular values of A. When the singular values of A have fast decay rate, it272

is much easier to identify a good low-rank basis Q and provide acceptable error bounds. However,273

when the singular values of A decay slowly, the constructed basis Q may have low accuracy, and274

the power scheme will increase the decay rate of the singular values of C = (AA∗)qA, and generate275

a better low-rank basis matrix.276

4.2. Statistical analysis of quaternion random test matrix. In this subsection, we aim277

to investigate Frobenius and spectral norms of the quaternion test matrix G and its pseudoinverse,278

where279

(4.4) G = G0 +G1i +G2j +G3k ∈ Qm×n, m ≤ n,280

and G0, . . . , G3 are standard Gaussian matrices whose entries are random and independently drawn281

from the normal distribution N(0, 1). Note that the norms of ‖G†‖a for a = 2, F are closely related282

to the measure of
(
GG∗

)−1
, where the matrix GG∗ is named as a quaternion Wishart matrix.283

As a result, we first recall some well known results about the quaternion normal distribution and284

Wishart distribution.285

Definition 4.4 ([35]). Let z = z0 + z1i+ z2j+ z3k be a random m×1 quaternion vector with286

zero mean. Define the quaternion covariance matrix Σm = cov(z, z) = E(zz∗) as287

Σm = E[(z0 + z1i + z2j + z3k)(zT0 − zT1 i− zT2 j− zT3 k)]288

= Σ00 + Σ11 + Σ22 + Σ33 + (−Σ01 + Σ10 − Σ23 + Σ32)i289

+(−Σ02 + Σ13 + Σ20 − Σ31)j + (−Σ03 + Σ30 − Σ12 + Σ21)k,290

in which Σij = cov(zi, zj) ∈ Rm×m is the real covariance of random vectors zi and zj.291

In particular, when the four parts z0, z1, z2, z3 of the quaternion vector z are real independent292

random vectors drawn from the normal distribution N(0, Im), then the quaternion random vector293

z follows the quaternion normal distribution N(0, 4Im) law, with the possibility density function294

(pdf) [35]: pdf(z) = (2π)−2metr(− 1
2z∗z). We remark that when z ∼ N(0, 4Im), ‖z‖22 represents the295

sum of 4m independent real variables and each variable follows N(0, 1) law. Thus by the concept296

of real chi-squared distribution, ‖z‖22 follows real chi-squared distribution χ2
4m with 4m degrees of297

freedom.298

The following lemma indicates that the quaternion normal distribution N(0, 4Im) is unitarily299

invariant.300

Lemma 4.5 ([20]). For an m × 1 quaternion random vector z ∼ N(0, 4Im), let y = Bz + u,301

where B is an m-by-m nonsingular quaternion matrix, and u is an m-by-1 quaternion vector, then302

y ∼ N(u, 4BB∗).303

The rigorous definition of the Wishart distribution is given as follows.304

Definition 4.6 ([35, 36]). Let Z = [z1 z2 . . . zn], where z1, . . . , zn are m × 1 random305

independent quaternion vectors drawn from the same distribution, i.e., zi ∼ N(0,Σ)(1 ≤ i ≤ n).306
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Then A = ZZ∗ ∈ Qm×m is said to have the quaternion Wishart distribution with n degrees of307

freedom and covariance matrix Σ. We will write that A ∼Wm(n,Σ).308

Note that the matrix Σ could be quaternion or real. In this paper, we are only interested in309

the real case and use the notation Σ for a distinguishment. The matrix A is singular when n < m,310

and the pdf of A doesn’t exist in this case. When m ≤ n, the pdf [20, 36] (See also [24, Theorem311

4.2.1]) of A exists. Before giving the pdf, we first recall the definitions of exterior products, which312

are vital for the volume element of a multivariate density function.313

Definition 4.7 ([20, 29]). For any m × n real matrix X, let dX = [dxij ] denote the matrix
of differentials, define the mn-exterior product {dX} of the mn distinct and free elements in X
as {dX} ≡ ∧

i,j
dxij . For any m × n quaternion matrix X = X0 + X1i + X2j + X3k, denote

dX = dX0 + dX1 i + dX2 j + dX3 k, and define {dX} = {dX0}∧{dX1}∧{dX2}∧{dX3}. If X is
Hermitian, then X0 is symmetric, while X2, X3, X4 are skew-symmetric, and {dX} takes the form

{dX} =
(
m
∧
i≤j

d(X0)ij

)
∧
(
m
∧
i<j

d(X1)ij

)
∧
(
m
∧
i<j

d(X2)ij

)
∧
(
m
∧
i<j

d(X3)ij

)
.

In the definition, the exterior product of differential form in different order might differ by314

a factor ±1. Since we are integrating exterior differential forms representing probability density315

functions, we ignore the sign of exterior differential forms for the sake of convenience. Based on316

the notation for the exterior product, the pdf of the quaternion Wishart matrix is given as follows.317

Lemma 4.8 ([20, 24]). Let the quaternion Wishart matrix A ∼Wm(n,Σ), then the pdf of A318

satisfies319

(4.5) pdf(A){dA} = βm,n [det(Σ)]
−2n

[det(A)]
2(n−m)+1

etr(−2Σ−1A){dA},320

in which {dA} represents the volume element of this multivariate density function, and

βm,n = 22mnπ−m(m−1)

(
m∏
i=1

Γ
(
2(n− i+ 1)

))−1

,

with the Gamma function Γ(·) defined by Γ(x) =

∫ ∞
0

tx−1e−tdt(x > 0).321

The properties of the quaternion Wishart matrix are given as follows.322

Theorem 4.9. Given A ∼Wm(n,Σ).323

(i) For M ∈ Qk×m with rank(M) = k, we have MAM∗ ∼Wk(n,MΣM∗).324

(ii) Partition

A =

[
A11 A12

A∗12 A22

]
, Σ =

[
Σ11 Σ12

Σ21 Σ22

]
,

in which A11 ∈ Qk×k, Σ11 ∈ Rk×k. Let A11,2 = A11 −A12A
−1
22 A∗12, Σ11,2 = Σ11 − Σ12Σ−1

22 Σ21,
then

A11,2 ∼Wk(n−m+ k,Σ11,2).

Proof. (i) Note that A =
n∑
i=1

ziz
∗
i with zi ∼ N(0,Σ). It follows that ẑi := 2Σ−1/2zi ∼

N(0, 4Im) from the definition of quaternion covariance. By applying Lemma 4.5, Mzi = 1
2 (MΣ1/2ẑi) ∼

N(0,MΣM∗), and hence

MAM∗ =

n∑
i=1

Mzi(Mzi)
∗ ∼Wk(n,MΣM∗).
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(ii) Let Z =

[
Ik 0

−A−1
22 A∗12 Im−k

]
, and change the variables of A into A11,2, B12 = A12 and325

B22 = A22 through the following transformation326

(4.6) AZ :=

[
A11 A12

A∗12 A22

] [
Ik 0

−A−1
22 A∗12 Im−k

]
=

[
A11,2 B12

0 B22

]
.327

The quaternion matrix Z is not Hermitian, and det(Z) is not well defined. In order to express328

det(A) in terms of det(A11,2) and det(B22), we consider the transformation Z∗AZ to get Z∗AZ =329

diag(A11,2,B22) =: F, where A11,2 and B22 are Hermitian and positive definite matrices.330

Take the real counter parts on both sides of Z∗AZ = F, the properties in (2.2) gives ΥT
ZΥAΥZ =331

ΥF and the standard determinant of real matrix ΥF satisfies332

(4.7) det(ΥF) = (det(ΥZ))
2

det(ΥA),333

where by writing the (2,1)-subblock of Z as −A−1
22 A∗12 = Ā0 + Ā1i + Ā2j + Ā3k, and using the

identity matrices in block columns 2,4,6,8 of ΥZ:

ΥZ =



I 0 0 0 0 0 0 0
Ā0 I −Ā1 0 −Ā2 0 −Ā3 0
0 0 I 0 0 0 0 0
Ā1 0 Ā0 I −Ā3 0 Ā2 0
0 0 0 0 I 0 0 0
Ā2 0 Ā3 0 Ā0 I −Ā1 0
0 0 0 0 0 0 I 0
Ā3 0 −Ā2 0 Ā1 0 Ā0 I


to eliminate the subblocks ±Āi to zero, we get det(ΥZ) = det(I4m) = 1. Thus in (4.7), det(ΥA) =334

det(ΥF). The applications of (2.4) and the definition (2.3) to this equality give335

(4.8) det(A) = det(F) = det(A11,2)det(B22).336

For the real matrix Σ, it is obvious that337

(4.9) det(Σ) = det(Σ22) det(Σ11,2).338

By putting C = Σ−1 =

[
C11 C12

C21 C22

]
, we conclude that C11 = Σ−1

11,2 and339

(4.10)
tr(Σ−1A) = tr

([
C11 C12

C21 C22

] [
A11,2 + B12B

−1
22 B∗12 B12

B∗12 B22

])
= tr(C11A11,2) + tr(∆1) + tr(∆2) = tr(Σ−1

11,2A11,2) + tr(∆1) + tr(∆2),
340

where ∆1 = Σ−1
11,2B12B

−1
22 B∗12 + C12B

∗
12,∆2 = C21B12 + C22B22.341

Note that the differential of A12A
−1
22 A∗12 satisfies

d(A12A
−1
22 A∗12) = (dA12)A−1

22 A∗12 + A12(dA−1
22 )A∗12 + A12A

−1
22 (dA∗12),

in which the differential d(A−1
22 ) can be derived by differentiating A−1

22 A22 = Im−k as

(dA−1
22 )A22 + A−1

22 (dA22) = 0, or equivalently, dA−1
22 = −A−1

22 (dA22)A−1
22 .
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Since the exterior products of repeated differentials are zero, we then get {d(A12A
−1
22 A∗12)} ∧342

{dA12} ∧ {dA22} = 0. Thus343

(4.11)
{dA} = {dA11} ∧ {dA12} ∧ {dA22} = {d(A11 −A12A

−1
22 A∗12)} ∧ {dA12} ∧ {dA22}

= {dA11,2} ∧ {dB12} ∧ {dB22}.
344

Substituting (4.8)-(4.11) into pdf(A){dA} in Lemma 4.8, we obtain345

(4.12)

pdf(A){dA} = βm,n

(
[det(Σ11,2)]−2n [det(A11,2)]

2(n−m)+1
etr(−2Σ−1

11,2A11,2)
)

×
(

[det(Σ22)]−2n [det(B22)]
2(n−m)+1

etr(−2∆1)etr(−2∆2)
)
{dA11,2} ∧ {dB12} ∧ {dB22},

346

from which we see that A11,2 is independent of B12,B22, because of the density function factors.

Notice that A11,2 is k × k, and [det(A11,2)]
2(n−m)+1

= [det(A11,2)]
2((n−m+k)−k)+1

. Moreover,
the terms in (4.12) including A11,2 have close relations to the pdf of a Wishart matrix, therefore
we can find the pdf of A11,2 from pdf(A) so that pdf(A11,2) takes the form

βk,n−m+k[det(Σ11,2)]−2(n−m+k) [det(A11,2)]
2((n−m+k)−k)+1

etr(−2Σ−1
11,2A11,2),

which means A11,2 ∼Wk(n−m+k,Σ11,2). The remaining terms in (4.12) correspond to the joint347

pdf of B12, B22, whose distributions will not be considered here.348

Theorem 4.9 includes the properties of a real Wishart matrix [29, Theorems 3.2.5 and 3.2.10]349

as special cases. With Theorem 4.9, the expectation of ‖G†‖2F is deduced in the following theorem.350

Theorem 4.10. Let the quaternion random matrix G ∈ Qm×n(m ≤ n) be given by (4.4).
Then the expectation of ‖G†‖2F satisfies

E‖G†‖2F =
m

4(n−m) + 2
.

Proof. It is obvious that each column in G follows N(0, 4Im) and351

(4.13) E‖G†‖2F = E
(
tr
[
(GG∗)−1

])
= E

m∑
i=1

(eTi A−1ei) =

m∑
i=1

E(eTi A−1ei),352

where ei is the i-th column of the identity matrix Im, and A = GG∗ ∼Wm(n, 4Im).353

For each fixed i, let Π1,i be the permutation matrix obtained by interchanging columns 1, i in354

them×m identity matrix, and denote C = ΠT
1,iAΠ1,i =

[
C11 C12

C21 C22

]
with C11 ∈ Q1×1, then C ∼355

Wm(n, 4Im) by Theorem 4.9(i). Moreover,
(
eTi A−1ei

)−1
=
(
eT1 C−1e1

)−1
= C11 −C12C

−1
22 C21.356

According to Theorem 4.9(ii),
(
eTi A−1ei

)−1 ∼W1(n−m+ 1, 4), indicating that there exists357

an (n−m+ 1)-dimensional quaternion column vector z ∼ N(0, 4In−m+1) satisfying358

(4.14)
(
eTi A−1ei

)−1
= ‖z‖22 ∼ χ2

4(n−m+1).359

By the expectation of the inverted chi-squared distribution in [11, Proposition A.8], we know that

E
(
eTi A−1ei

)
= E

1

χ2
4(n−m+1)

=
1

4(n−m) + 2
.

The assertion in the theorem then follows.360
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The theorem below provides a bound on the probability of a large deviation above the mean.361

Theorem 4.11. Let the quaternion random matrix G ∈ Qm×n with n − m ≥ 1 be given by362

(4.4). Then for each t ≥ 1,363

(4.15) P

{
‖G†‖2F >

3m

4(n−m+ 1)
t

}
≤ t−2(n−m).364

Proof. According to (4.13)–(4.14), Z = ‖G†‖2F =
m∑
i=1

Xi with Xi = eTi A−1ei and X−1
i ∼

χ2
4(n−m+1). Let q = 2(n −m) and when n −m ≥ 1, the result in [11, Lemma A.9] ensures that

‖Xi‖Lq := [E(|Xi|q)]1/q < 3
4(n−m+ 1)

. Using the triangle inequality for the Lq-norm, we obtain

‖Z‖Lq ≤
m∑
i=1

‖Xi‖Lq <
3m

4(n−m+ 1)
=: γ.

With Markov’s inequality, P {Z ≥ γt} = P {Zq ≥ γqtq} ≤ E(Zq)
γqtq

< t−q = t−2(n−m), leading to the365

desired result.366

We now turn to the estimate of ‖G†‖2. Note that ‖G†‖2 = (λmin(A))
−1/2

, where λmin(A)367

denotes the smallest eigenvalue of A. We therefore need to study the pdf of the smallest eigenvalue368

of A, based on the following lemma and a frame work in [3] for discussing the eigenvalues of a real369

Wishart matrix.370

Lemma 4.12 ([20]). Let the quaternion Wishart matrix A ∼Wm(n, Im), then the pdf for the
eigenvalues λ1 ≥ λ2 ≥ · · · ≥ λm > 0 of A is given by

f(λ1, λ2, · · · , λm) = Km,n

m∏
i=1

λ
2(n−m)+1
i

m∏
i<j

(λi − λj)4 e−2
∑m

i=1 λi ,

where K−1
m,n = 2−2mnπ2m

m∏
i=1

Γ
(

2(n− i+ 1)
)

Γ
(

2(m− i+ 1)
)
.371

The following lemma gives the lower and upper bounds of the pdf of λmin(A).372

Lemma 4.13. Let the quaternion Wishart matrix A ∼ Wm(n, Im), and fλmin(λ) denote the373

pdf of the smallest eigenvalue of quaternion Wishart matrix A, then fλmin
(λ) satisfies374

(4.16) Lm,ne−2mλλ2(n−m)+1 ≤ fλmin
(λ) ≤ Lm,ne−2λλ2(n−m)+1,375

where376

(4.17) Lm,n =
22(n−m+1)π−2Γ(2n+ 2)

Γ(2n− 2m+ 4)Γ(2n− 2m+ 2)Γ(2m)
.377

Proof. For λ ≥ 0, let Rm−1(λ) = {(λ1, λ2, . . . , λm−1) : λ1 ≥ · · · ≥ λm−1 ≥ λ} ⊆ R1×(m−1).
From the pdf of the eigenvalues of A in Lemma 4.12, we have

fλmin
(λ) =

∫
Rm−1(λ)

f(λ1, λ2, · · · , λm−1, λ)dλ1dλ2 · · · dλm−1

= Km,ne−2λλ2(n−m)+1

∫
Rm−1(λ)

e−2
∑m−1

i=1 λi

m−1∏
i=1

λ
2(n−m)+1
i

m−1∏
i=1

(λi − λ)4

m−2∏
i=1

m−1∏
j=i+1

(λi − λj)4dλ1dλ2 · · · dλm−1.
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By the inequality (λi − λ)4 ≤ λ4
i , we find that

fλmin(λ) ≤ Km,ne−2λλ2(n−m)+1

∫
Rm−1(0)

e−2
∑m−1

i=1 λi

m−1∏
i=1

λ
2(n−m)+5
i

m−2∏
i=1

m−1∏
j=i+1

(λi − λj)4dλ1dλ2 · · · dλm−1

=: Km,ne−2λλ2(n−m)+1Cm,n.

For the lower bound, set µi = λi − λ(i = 1, . . . ,m− 1), then µ1 ≥ µ2 ≥ · · · ≥ µm−1 ≥ 0, and

fλmin
(λ) = Km,ne−2mλλ2(n−m)+1

∫
Rm−1(0)

e−2
∑m−1

i=1 µi

m−1∏
i=1

(µi + λ)2(n−m)+1

m−1∏
i=1

µ4
i

m−2∏
i=1

m−1∏
j=i+1

(µi − µj)4dµ1dµ2 · · · dµm−1

≥ Km,ne−2mλλ2(n−m)+1

∫
Rm−1(0)

e−2
∑m−1

i=1 µi

m−1∏
i=1

µ
2(n−m)+5
i

m−2∏
i=1

m−1∏
j=i+1

(µi − µj)4dµ1dµ2 · · · dµm−1

= Km,ne−2mλλ2(n−m)+1Cm,n.

Note that f(λ1, . . . , λm) is a probability density function, therefore by the expression of Km,n

in Lemma 4.12,∫
Rm(0)

e−2
∑m

i=1 λi

m∏
i=1

λ
2(n−m)+1
i

m−1∏
i=1

m∏
j=i+1

(λi − λj)4dλ1dλ2 · · · dλm = K−1
m,n.

It then follows that Cm,n = K−1
m−1,n+1 and hence the inequality (4.16) holds, where Lm,n =378

Km,n

Km−1,n+1
and it takes the form (4.17) by Theorem 4.9(i). The assertion in the lemma then follows.379

Theorem 4.14. Let G ∈ Qm×n be given by (4.4). Then380

(4.18) P
{
‖G†‖2 >

e
√

4n+ 2

4(n−m+ 1)
t
}
≤ π−3

4(n−m+ 1)(2n− 2m+ 3)
t−4(n−m+1),381

and E‖G†‖2 ≤ e
√

4n+2
2n−2m+2 .382

Proof. Note that the columns of G follow N(0, 4Im) law, therefore according to Theorem383

4.9(i), A = 1
4GG∗ ∼Wm(n, Im).384

Assume that λmin is the smallest eigenvalue of A. By Lemma 4.13, we know that

P
{
λmin < γ

}
=

∫ γ

0

fλmin
(t)dt ≤ Lm,n

∫ γ

0

t2(n−m)+1dt

≤ 22(n−m+1)π−2(2n+ 1)2(n−m+1)Γ(2m)
Γ(2n− 2m+ 4)Γ(2n− 2m+ 2)Γ(2m)

γ2n−2m+2

2n− 2m+ 2

=
π−2(4n+ 2)2n−2m+2

(2n− 2m+ 3)[Γ(2n− 2m+ 3)]2
γ2n−2m+2

≈ π−3

4(n−m+ 1)(2n− 2m+ 3)

[
e
√

4n+ 2
2n− 2m+ 2

]2(2n−2m+2)

γ2n−2m+2

=: Cγ2n−2m+2,
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where we have used the Stirling’s approximation formula Γ(n+ 1) = n! ≈
√

2πn
(
n
e

)n
. Thus

P
{
‖G†‖2 > τ

}
= P

{
λmin <

1

4
τ−2

}
≤ C̄τ−2(2n−2m+2),

for C̄ = C/42n−2m+2. The estimate in (4.18) is derived.385

To estimate E‖G†‖2, set ` = 2(n−m+ 1), then for any a ≥ 0,

E‖G†‖2 =

∫ +∞

0

P
{
‖G†‖2 > τ

}
dτ ≤ a+

∫ +∞

a

P
{
‖G†‖2 > τ

}
dτ ≤ a+

C̄a1−2`

2`− 1
,

where the right-hand side is minimized for a = C̄1/(2`) = 2−1C1/(2`). Then

E‖G†‖2 ≤ (1 +
1

2`− 1
)C̄1/(2`) ≤ 2C̄1/(2`) ≤ e

√
4n+ 2

2n− 2m+ 2
.

The assertion for E‖G†‖2 then follows.386

The spectral or Frobenius norm of G is also vital for our error analysis. For the real Gaussian387

matrix G̃, the expectation of spectral or Frobenius norm of the scaled matrix S̃G̃T̃ has been proven388

to satisfy the following sharp bounds [11, Proposition 10.1]:389

(4.19) E‖S̃G̃T̃‖2F = ‖S̃‖2F ‖T̃‖2F , E‖S̃G̃T̃‖2 ≤ ‖S̃‖2‖T̃‖F + ‖S̃‖F ‖T̃‖2.390

Based on above results, we present the estimates for the norms of quaternion scaled matrix SGT.391

Lemma 4.15. Let G ∈ Qm×n be given by (4.4), and S ∈ Ql×m,T ∈ Qn×r be any two fixed392

quaternion matrices, then393

E‖SGT‖2F = 4‖S‖2F ‖T‖2F ,(4.20)394

E‖SGT‖2 ≤ 3(‖S‖2‖T‖F + ‖S‖F ‖T‖2).(4.21)395

Proof. Note that the distribution of G and Frobenius norm of a matrix are both invariant
under unitary transformations. As a result, without loss of generality, we assume that S,T are
real diagonal matrices whose diagonal entries are exactly their singular values. Write S = S,T = T ,
it follows that

E‖SGT‖2F = E
∑
k,j

(|skkgkjtjj |)2 =
∑
k,j

|skk|2|tjj |2E|gkj |2 = 4‖S‖2F ‖T‖2F ,

where E|gkj |2 = 4 because the quaternion number gkj follows N(0, 4) law.396

For the spectral norm, by the real counter part of SGT, we know that ‖SGT‖2 = ‖ΥSΥGΥT ‖2397

in which ΥG has dependent subblocks, and hence it is not a real Gaussian matrix. In order to398

apply the result in (4.19) to the quaternion spectral norm estimation, write ΥG in terms of its first399

block column Gc:400

(4.22) ΥG = [J0Gc J1Gc J2Gc J3Gc],401

where Gc is a real Gaussian matrix, J0 = I4m and402

(4.23) J1 =


−eT2
eT1
eT4
−eT3

⊗ Im, J2 =


−eT3
−eT4
eT1
eT2

⊗ Im, J3 =


−eT4
eT3
−eT2
eT1

⊗ Im,403
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and ei is the i-th column of the 4× 4 identity matrix.404

Note that for four arbitrary real matrices M0, . . . ,M3 with the same rows,

‖[M0 M1 M2 M3]‖2 = ‖
3∑
i=0

MiM
∗
i ‖

1/2
2 ≤ 2 max

0≤i≤3
‖Mi‖2.

Using this inequality to evaluate the spectral norm of SGT, we obtain

‖SGT‖2 = ‖ΥS [J0GcT J1GcT J2GcT J3GcT ]‖2 ≤ 2 max
0≤k≤3

‖ΥSJkGcT‖2 = 2‖ΥSGcT‖2,

where we have used the facts JTk ΥSJk = ΥS and ‖ΥSJkGcT‖2 = ‖ΥSGcT‖2.405

Therefore by (4.19) and (2.5), we have

E‖SGT‖2 ≤ 2 (‖ΥS‖2‖T‖F + ‖ΥS‖F ‖T‖2) = 2‖S‖2‖T‖F + 4‖S‖F ‖T‖2.

By applying above estimates to evaluate E‖SGT‖2 = E‖T∗G∗S∗‖2, we obtain E‖SGT‖2 ≤406

2‖S‖F ‖T‖2 + 4‖S‖2‖T‖F . Take the average of the two upper bounds of E‖SGT‖2, the asser-407

tion in (4.21) follows.408

4.3. Proofs of Theorems 4.1-4.3. Throughout this subsection, ‖ · ‖a denotes either the409

spectral norm or Frobenius norm.410

Proof of Theorem 4.1. Let Q be the orthonormal basis for the range of the sample matrix411

Y0 = AΩ. Set Ωi = V∗iΩ for i = 1, 2, then by a similar deduction to [11, Theorem 9.1], the412

following inequality413

(4.24) ‖Â(0)
k+p −A‖2a = ‖(Im −QQ∗)A‖2a ≤ ‖Σ2‖2a + ‖Σ2Ω2Ω

†
1‖2a ≤

(
‖Σ2‖a + ‖Σ2Ω2Ω

†
1‖a
)2

,414

also holds for the quaternion case, in which V∗Ω follows the N(0, 4In) law. By Lemma 4.5, Ω1, Ω2415

are disjoint submatrices of V∗Ω with the k × (k + p) matrix Ω1 of full row rank with probability416

one.417

By Jensen’s inequality to (4.24), we know that

E‖Â(0)
k+p −A‖F ≤

(
E‖Â(0)

k+p −A‖2F
)1/2

≤
(
‖Σ2‖2F + E‖Σ2Ω2Ω

†
1‖2F

)1/2

,

where by conditioning on the value of Ω1 and applying (4.20) to the scaled matrix Σ2Ω2Ω
†
1,

E‖Σ2Ω2Ω
†
1‖2F = E

(
E
[
‖Σ2Ω2Ω

†
1‖2F | Ω1

])
= 4‖Σ2‖2FE‖Ω

†
1‖2F ,

which is exactly 4k
4p+ 2‖Σ2‖2F according to Theorem 4.10. The assertion in Theorem 4.1 then418

follows.419

Proof of Theorem 4.2. From (4.24), it is obvious that E‖Â(0)
k+p−A‖2 ≤ ‖Σ2‖2+E‖Σ2Ω2Ω

†
1‖2,

where by conditioning on the value of Ω1 and applying (4.21) to the scaled matrix Σ2Ω2Ω
†
1,

E‖Σ2Ω2Ω
†
1‖2 = E

(
E
[
‖Σ2Ω2Ω

†
1‖2|Ω1

])
≤ 3E(‖Σ2‖2‖Ω†1‖F + ‖Σ2‖F ‖Ω†1‖2)

≤ 3‖Σ2‖2
(
E‖Ω†1‖2F

)1/2

+ 3‖Σ2‖FE‖Ω†1‖2.

The estimate for the expectation of the error then follows from Theorems 4.10 and 4.14.420
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For the power scheme, let Q̃ be the orthonormal basis for the range of Yq = CΩ = (AA∗)
q
AΩ =

UΣ2q+1V∗. By Jensen’s inequality and a similar deduction to [11, Theorem 9.2], we know that

E‖Â(q)
k+p −A‖2 = E‖(Im − Q̃Q̃∗)A‖2 ≤

(
E‖(Im − Q̃Q̃T )C‖2

)1/(2q+1)

,

where σ2q+1
1 , . . . , σ2q+1

n are the singular values of C. The assertion for the power scheme comes421

true by invoking the result in (4.1).422

Remark 4.16. By using the relation
∑
j>k

σ2q+1
j ≤ (min(m,n) − k)σ2q+1

k+1 , the spectral error in423

Theorem 4.2 is bounded by E‖Â(q)
k+p−A‖2 ≤ σk+1

[
1 + 3

√
k

4p+2 + 3e
√

4k+4p+2
2p+2

√
min(m,n)− k

]1/(2q+1)

.424

The power scheme drives the extra factor in the error to one exponentially fast through increasing425

the exponent q, and by the time q ∼ log(min(m,n)), E‖Â(q)
k+p −A‖2 ∼ σk+1.426

The analysis of deviation bounds for approximation errors in Theorem 4.3 relies on the following427

well-known concentration result [11, Proposition 10.3] for functions of a real Gaussian matrix.428

Lemma 4.17 ([11]). Suppose that h(·) is a Lipschitz function on real matrices: |h(X) −429

h(Y )| ≤ L‖X − Y ‖F for all X,Y ∈ Rs×t. Then for an s × t standard real Gaussian matrix G,430

P{h(G) ≥ Eh(G) + Lu} ≤ e−u
2/2.431

Proof of Theorem 4.3. For t ≥ 1, define the parameterized event on which the spectral and432

Frobenius norms of Ω1 are both controlled:433

(4.25) Et =

{
Ω1 : ‖Ω†1‖2 ≤

e
√

4k + 4p+ 2

4(p+ 1)
· t and ‖Ω†1‖F ≤

√
3k

4p+ 4
· t

}
.434

By Theorems 4.11 and 4.14, the probability of the complement of this event satisfies a simple
bound

P(Ec
t ) ≤ t−(4p+4) + t−4p ≤ 2t−4p,

according to the estimates in (4.15)-(4.18).435

Set h̄(X) = ‖Σ2XΩ†1‖F , in which the real counter part of an (n− k)× k quaternion matrix X436

can be represented on the basis of Xc as ΥX = [J0Xc J1Xc J2Xc J3Xc] for J = [J0 J1 J2 J3], and437

Jk ∈ R4(n−k)×4(n−k) has similar structure to the one in (4.23).438

Owing to (2.5)-(2.6), h̄(X) = 1
2‖ΥΣ2ΥXΥΩ†1

‖F and we could write h̄(X) as a function of Xc439

with h(Xc) := h̄(X). Notice that h(Xc) is a Lipschitz function on real matrices:440

(4.26)
|h(Xc)− h(Yc)| =

∣∣∣‖Σ2XΩ†1‖F − ‖Σ2YΩ†1‖F
∣∣∣ ≤ ‖Σ2(X−Y)Ω†1‖F

≤ ‖Σ2‖2‖Ω†1‖2‖X−Y‖F = ‖Σ2‖2‖Ω†1‖2‖Xc −Yc‖F ,
441

with a Lipschitz constant L ≤ ‖Σ2‖2‖Ω†1‖2. With Jensen’s inequality and Lemma 4.15, we get

E[h̄(Ω2) | Ω1] ≤
(
E[
(
h̄(Ω2)

)2 | Ω1]
)1/2

= 2‖Σ2‖F ‖Ω†1‖F ,

where h̄(Ω2) = h
(
(Ω2)c

)
, and (Ω2)c is a real Gaussian matrix. Applying Lemma 4.17, conditionally

to the random variable h̄(Ω2) = ‖Σ2Ω2Ω
†
1‖F gives

Pu,t := P
{
‖Σ2Ω2Ω

†
1‖F > 2‖Σ2‖F ‖Ω†1‖F + ‖Σ2‖2‖Ω†1‖2u | Et

}
≤ e−u

2/2.
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In (4.25), consider the upper bounds associated with the event Et and substitute them into the
above inequality, then we can get

P

{
‖Σ2Ω2Ω

†
1‖F >

√
3k

p+ 1
‖Σ2‖F t+

e
√

4k + 4p+ 2

4p+ 4
‖Σ2‖2ut | Et

}
≤ Pu,t ≤ e−u

2/2.

Using P(Ec
t ) ≤ 2t−4p to remove the conditioning, we obtain

P

‖Σ2Ω2Ω
†
1‖F >

√
3k

p+ 1

(∑
j>k

σ2
j

)1/2

t+ ut
e
√

4k + 4p+ 2

4p+ 4
σk+1

 ≤ 2t−4p + e−u
2/2.

In terms of (4.24), ‖Â(0)
k+p −A‖F ≤ ‖Σ2‖F + ‖Σ2Ω2Ω

†
1‖F , the desired probability bound in (4.2)442

follows.443

For the deviation bound of the spectral error, set h̃(X) = ‖Σ2XΩ†1‖2, and view h̃(X) as a
function of Xc, i.e. ȟ(Xc) = h̃(X), then

|ȟ(Xc)− ȟ(Yc)| ≤ ‖Σ2‖2‖X−Y‖2‖Ω†1‖2 ≤ ‖Σ2‖2‖Ω†1‖2‖X−Y‖F = ‖Σ2‖2‖Ω†1‖2‖Xc −Yc‖F ,

from which we know that ȟ(·) is also a Lipschitz function with the Lipschitz constant L ≤
‖Σ2‖2‖Ω†1‖2. Using the upper bound for the expectation of h̃(Ω):

E[h̃(Ω2) | Ω1] ≤ 3
(
‖Σ2‖2‖Ω†1‖F + ‖Σ2‖F ‖Ω†1‖2

)
,

and the concentration result in Lemma 4.17, it follows that

P
{
‖Σ2Ω2Ω

†
1‖2 > 3(‖Σ2‖2‖Ω†1‖F + ‖Σ2‖F ‖Ω†1‖2) + ‖Σ2‖2‖Ω†1‖2u | Et

}
≤ e−u

2/2.

The bound in (4.3) could be derived from (4.24)-(4.25) with a similar technique.444

Corollary 4.18. (Simple deviation bound for the spectral error of power scheme-free algo-445

rithm) With the notations in Theorem 4.1, we have the simple upper bound446

(4.27) ‖Â(0)
k+p −A‖2 ≤

(
1 + 18

√
1 +

k

p+ 1

)
σk+1 +

6
√

4k + 4p+ 2

p+ 1

∑
j>k

σ2
j

1/2

,447

except with the probability 3e−4p.448

Proof. Taking u = 2
√

2p, t = e in Theorem 4.3 leads to

‖Â(0)
k+p −A‖2 ≤

(
1 + 3e

2

√
3k
p+1 + 2

√
2pe2

2
√
p+1

√
1 + k

p+1

)
σk+1 + 3e2

√
4k+4p+2
4p+4

(∑
j>k

σ2
j

)1/2

≤
(

1 + ( 3
√

3e
2 +

√
2e2)

√
1 + k

p+1

)
σk+1 + 6

√
4k+4p+2
p+1

(∑
j>k

σ2
j

)1/2

,

from which the desired upper bound follows.449
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Fig. 5.1. Approximation errors and upper bounds for a 100 × 80 matrix whose singular values decay very
slowly (decay rate: 0.9). The left figures are for the estimates of spectral errors, while the right ones correspond to
the Frobenius errors.

5. Numerical examples. In this section, we give five examples to test the features of ran-450

domized QSVD algorithms. The following numerical examples are performed via MATLAB with451

machine precision u = 2.22e − 16 in a laptop with Intel Core (TM) i5-8250U CPU @ 1.80GHz452

and the memory is 8 GB. Algorithms such as quaternion QR, QSVD are coded based on the453

structure-preserving scheme.454

Example 5.1. In this example, we test the rationality of estimated bounds for approximation455

errors ‖Â(q)
k+p − A‖a. To this end, we construct an m × n(m ≥ n) quaternion random matrix456

A as A = U
[

Σ1

0

]
V∗, where U,V are quaternion Householder matrices taking the form U =457

Im − 2uu∗,V = In − 2vv∗, u,v are quaternion unit vectors, and Σ1 = diag(σ1, . . . , σn) is the real458

n× n diagonal matrix. Consider singular values with different decay rate as459

(1) σ1 = 1, σi+1/σi = 0.9 for i = 1 . . . , n− 1 or460

(2) σ1 = 1, σi+1/σi = 0.1 for i = 1 . . . , n− 1,461

where in case (1), the smallest singular value is σ80 ≈ 2.18·10−4, while in case (2), for the threshold462

θ = 10−15, the numerical rank of the matrix is 16.463

For each case with different values of k, p, we run Algorithm 3.1 with q = 0 for 1000 times,464

and plot the histograms for exact values of ‖Â(0)
k+p −A‖a with a = 2, F . Below each histogram,465

the upper bounds of the errors are listed, where we take p = 4 for all cases, and the bound ηea for466

average errors is estimated via Theorems 4.1 and 4.2, while the bound ηda for deviation errors is467

based on (4.2) and (4.27), respectively, in which u = 2
√

2p, t = e. For p ≥ 4, the bounds hold with468

probability 99.99%.469

In Figure 5.1, it is observed that for case (1) with slow decay rate in the singular values, the470

upper bounds ηe2 and ηd2 are respectively about 15 and 40 times the actual values of ‖Â(0)
k+p−A‖2,471

while for the Frobenius error ‖Â(0)
k+p − A‖F , the estimated upper bounds ηeF and ηdF are much472

tighter, and they are only about 2 and 10 times the actual values, respectively.473
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Fig. 5.2. Approximation errors and upper bounds for a 100 × 80 matrix whose singular values decay very
fast (decay rate: 0.1) The left figures are for the estimates of spectral errors, while the right ones correspond to
Frobenius errors.

In Figure 5.2 and for case (2) with fast decay rate in the singular values, a relative large474

oversampling size p = 4 gives upper bounds that are not sharp enough, and there may be a factor475

O(104) between the estimated upper bounds and actual approximation errors. When we take476

p = 1, the estimates for the upper bounds have been greatly enhanced. The reason is that the477

tested matrix A has fast decay rate in its singular values, therefore the orthonormal basis ofR(AΩ)478

gives a good approximation of an `-dimensional (` = k + p) left dominant singular subspace of479

A, which makes ‖Â(0)
k+p −A‖2 ≈ σk+p+1, and when p = 4, it is much smaller than the estimated480

bound ηe2 ≈ O(σk+1).481

Overall, the test results in Figures 5.1-5.2 illustrate the rationality of theoretical estimates for482

approximation errors.483

Example 5.2. In this example, we test how different values of q in the power scheme affect484

the approximation errors ‖Â(q)
k − A‖a. We use standard test image lena5121 with 512 × 512485

pixels. This color image is characterized by a 512 × 512 pure quaternion matrix A with entries486

Aij = Riji + Gijj + Bijk, where Rij , Gij , Bij represent the red, green and blue pixel values at487

the location (i, j) in the image, respectively. The singular values and adjacent singular value ratio488

σk+1/σk of A are depicted in Figure 5.3.489

Based on the structure-preserving quaternion Householder QR and QMGS processes for getting490

the orthonormal basis matrix Q, we take the oversampling p = 4 and depict the approximation491

errors ‖Â(q)
k −A‖a for k ranging from 5 to 200 with step 5 in Figures 5.4–5.5, where svdQ plots the492

optimal rank-k approximation errors obtained via the structure-preserving QSVD algorithm [38].493

It is observed that when k ≥ 5, the adjacent singular value ratio is greater than 0.8, the power
scheme with q = 0 gives the worst estimates for the rank-k approximation errors among three
cases. In the quaternion Householder QR-based algorithm, the case with q = 2 behaves better

1lena512: https://www.ece.rice.edu/∼wakin/images/
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Fig. 5.3. Singular values and adjacent singular value ratios for color image lena512.
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Fig. 5.4. Errors incurred for different power schemes, in which the orthonormal basis Q in randsvdQ is
obtained via quaternion Householder QR procedure.

than that for q = 1, since a smaller adjacent singular value ratio
(
σk+1

σk

)2q+1

of (AA∗)qA helps

generate better basis matrix Q and rank-k matrix approximation. Although the approximation
errors from randomized algorithms are not as accurate as the svdQ-based ones, they still deliver
acceptable peak signal-to-noise ratio (PNSR) and relative approximate errors as listed in Table 5.1,
in which the PSNR is defined by

PSNR(Â
(q)
k ,A) = 10 log10

2552mn

‖Â(q)
k −A‖2F

.

It is observed that q = 1 is acceptable for the desired accuracy.494

In Figure 5.5, QMGS-based method is compared with quaternion Householder QR procedure.495

QMGS gives satisfactory approximations for k < 160 and q = 1 or 2, while for q = 2 and k ≥ 160,496

the estimates become worse. That is partly because for q = 2,
(
σ1

σ165

)2q+1

= 1.1e + 13 and497

Yq = (AA∗)qAΩ tends to be an ill-conditioned matrix, which leads to a great loss of orthogonality498

in the matrix Q during the QMGS procedure. However, the low-rank approximation problem only499

captures the dominant SVD triplets, the target rank is usually small, and in the randomized500

algorithm we usually deal with the QMGS of a well-conditioned matrix, the QMGS with q = 1 is501

preferred, since it is more efficient than the quaternion Householder QR.502
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Table 5.1
The peak signal-to-noise ratio and relative approximating errors for randsvdQ

k q PNSR
‖Â(q)

k −A‖2
‖A‖2

‖Â(q)
k −A‖F
‖A‖F

50 1 24.7780 0.0115 0.0602
2 25.0501 0.0106 0.0583

100 1 29.4102 0.0057 0.0353
2 29.7303 0.0051 0.0340

150 1 32.8041 0.0035 0.0239
2 33.1368 0.0032 0.0230
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Fig. 5.5. Errors incurred for different power schemes, in which the orthonormal basis Q in randsvdQ is
obtained via quaternion MGS.

Example 5.3. In this example, we compare numerical behaviors of randeigQ and prandsvdQ503

algorithms in computing the rank-k approximation of a large quaternion Hermitian matrix. It is504

well known that the real Laplacian matrix plays important roles in image denoising, inpainting505

problems for the grayscale image. Recently in [1], complex Laplacian matrix is also discussed in506

the mixed graph with some directed and some undirected edges, and its zero eigenvalue is proved507

to be related to the connection of the mixed graph. Our example involves a quaternion graph508

Laplacian matrix for a color image, which is modified from real [11] and complex cases.509

For this purpose, we begin resizing lena512 to a 60×60-pixel color image, owing to the restricted

memory of Laptop. For each pixel i in color channel s ∈ {r, g, b}, form a vector x
(i)
s ∈ R25 by

gathering the 25 intensities of the pixels in a 5×5 neighborhood centered at pixel i. Next, we form
a 3600× 3600 pure quaternion Hermitian weight matrix W = Wri +Wgj +Wbk with wji = w∗ij ,
wii = 0, and wij = (wr)ij i + (wg)ij j + (wb)ij k for i < j, which is determined by

(ws)ij = exp
{
−‖x(i)

s − x(j)
s ‖22/σ2

s

}
, j > i, s ∈ {r, g, b}.

Here the entries in their strictly upper triangular part of Ws reflect the similarities between patches,
and the parameter σs controls the level of sensitivity in each channel. By zeroing out all entries of
skew-symmetric matrices Wr,Wg and Wb except the four largest ones in magnitude in each row,

we obtain sparse weight matrices W̃s and W̃. Similar to the complex case, let D be a diagonal
matrix with dii =

∑
j

|wij |, and define the quaternion Laplacian matrix L as

L = I −D−1/2W̃D−1/2.
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Fig. 5.6. The cumulative proportion of eigenvalues of a quaternion Laplacian matrix and eigenvalues computed
via randeigQ and prandsvdQ for k = 200, p = 10.

For all s ∈ {r, g, b}, take σs = 50, store the 14400 × 3600 real matrix Lc, and use structure-510

preserving algorithm eigQ [13] to compute all eigenvalues of L. Here the Hermitian matrix L is a511

very extreme case with positive eigenvalues, and the smallest ratio σk+1/σk of adjacent eigenvalues512

(singular values) of L is greater than 0.98.513

Take k = 200, p = 10, q = 0, 1, 2 to compare the eigenvalues of L via randeigQ, prandsvdQ. In514

all cases, the approximations of eigenvalues are not good enough, because k = 200 only captures515

less than 10% proportion of eigenvalues in this extreme case, as revealed in the left figure of Figure516

5.6. Due to the quite slow decay rate of eigenvalues, when q is small, say for q = 0, the eigenvalues517

computed via randeigQ, prandsvdQ are not accurate enough, but prandsvdQ still approximates518

eigenvalues better than randeigQ, as predicted in Remark 3.3. The accuracy is improved as q519

increases, and for this extreme example, q = 2 is sufficient to guarantee the eigenvalues from two520

algorithms with almost the same accuracy. For general cases, we believe that randeigQ is as reliable521

as prandsvdQ but more efficient for practical low-rank Hermitian matrix approximation problems522

with dominant singular values.523

Example 5.4. In this example, we consider the color face recognition problem [15] based on524

color principal component analysis (CPCA) approach. Suppose that there are s training color525

image samples, denoted by m × n pure quaternion matrices F1,F2, . . . ,Fs, and the average is526

Ψ = 1
s

s∑
t=1

Ft ∈ Qm×n. Let X = [vec(F1)− vec(Ψ), · · · , vec(Fs)− vec(Ψ)], where vec(·) means to527

stack the columns of a matrix into a single long vector. The core work of CPCA approach is to528

compute the left singular vectors corresponding to the first k largest singular values of X, which529

are called the eigenfaces. The eigenfaces can also be obtained from the eigQ algorithm [13] applied530

to XX∗ or XX∗.531

For color image samples, we use the Georgia Tech face database2, and all images are manually532

cropped, and then resized to 120 × 120 pixels. The samples of the cropped images are shown533

in Figure 5.7. There are 50 persons to be used. The first ten face images per individual person534

are chosen for training and the remaining five face images are used for testing. The number of535

chosen eigenfaces, k, increases from 1 to 30. We need to compute k SVD triplets of a 14400× 500536

quaternion matrix X, in which the 14400 rows refer to 120× 120 pixels and the 500 columns refer537

to 50 persons with 10 faces each.538

As revealed in [15], the matrix is very large and the svdQ algorithm does not finish the com-539

putation of the singular value decomposition of X in 2 hours and eigQ needs about seven times540

2The Georgia Tech face database. http://www.anefian.com/research/face reco.htm
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Fig. 5.7. Sample images for one individual of the Georgia Tech face database
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Fig. 5.8. The color face recognition accuracy and CPU time by lansvdQ, randsvdQ, randeigQ and prandsvdQ
methods with parameters p = 4, q = 0.

of the running CPU time via the quaternion Lanczos-based algorithm (lansvdQ)3. In this exper-541

iment we consider the lansvdQ, randsvdQ, prandsvdQ algorithms of X, and randeigQ algorithm of542

X∗X, where the orthonormal basis is derived based on quaternion MGS process, and in randeigQ,543

the matrix X∗X is not explicitly formed. The detailed comparisons of recognition accuracy and544

running CPU time of candidate methods are depicted in Figure 5.8, in which the accuracy of face545

recognition is the percentage of correctly recognized persons for given 250 test images. For p = 4546

and q = 0, randomized algorithms have higher recognition accuracy than lansvdQ, and are much547

more efficient than lansvdQ. Moreover, the preconditioning technique for randsvdQ can slightly548

enhance the efficiency of the algorithm. Unlike lansvdQ, the CPU time for randomized algorithms549

does not increase significantly with the target rank (number of eigenfaces). lansvdQ is much less550

efficient partly because it uses for-end loop and performs matrix-vector products at each iteration,551

while the randomized algorithms make full use of the matrix-matrix products that have been highly552

optimized for maximum efficiency on modern serial and parallel architectures [8].553

Example 5.5. In this example, we generalize the fast frequent directions via subspace embed-554

ding (SpFD) method [34] to the quaternion case. The corresponding algorithm is referred to as555

SpFDQ, and is compared with prandsvdQ through the color face recognition problem in Example556

5.4.557

3https://hkumath.hku.hk/∼mng/mng files/LANQSVDToolbox.zip
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Fig. 5.9. The color face recognition accuracy and CPU time by SpFDQ(`, t) and prandsvdQ methods with
parameters p = 4, q = 0.

Given a real matrix A ∈ Rm×n (m ≥ n), the SpFD(`, t) algorithm squeezes the rows of A
by pre-multiplying SP on A, where t is assumed to be a factor of m (if not, append zero rows
to the end of A until m is), P is a random permutation matrix, and S = diag(S1, . . . , St) is a
sparse sketching matrix with Si ∈ R`×m

t being generated on a probability distribution. At the
start of the algorithm, it extracts and shrinks the top ` important right singular vectors of a two-

layered matrix
[
S1PA
S2PA

]
via SVD, and then combines them with the next ` rows in SPA to form a

new two-layered matrix. Repeat the procedure until the last ` rows of SPA is combined into the
computation. Finally, an orthonormal basis V` ∈ Rn×` for the row space of SPA is obtained, and
a rank-k approximation of A is derived based on the SVD of AV`. The algorithm consists of (t−1)
iterations, and the total cost is

2nnz(A)(`+ 1) + [24n`2 + 160`3](t− 1) + 6m`2 + 20`3 + 2m`k + 2mn`, t > 1,

where m ≥ n ≥ ` ≥ k, m � `. The choice of t = 2, ` = k corresponds to an algorithm with the558

cheapest cost, while for t = dm/`e, SpFD(`, t) reduces to a slight modification of FD in [7].559

In the SpFDQ(`, t) algorithm, A is taken to be the 14400× 500 matrix X in Example 5.4, and560

the choice of sketching matrix S is the same as the real case. To perform a fair comparison, we561

also consider the preconditioned technique in the QSVD of a short-and-wide or tall-and-narrow562

quaternion matrix. During the (t − 1) rounds of QSVD in the iteration, due to the potential563

singularity of the sketching matrix Si that might lead to a singular two-layered matrix, we apply564

quaternion Householder QR first and then implement the QSVD on a small-size matrix. In the565

last round of QSVD of AV`, the QSVD of AV` is obtained via the QMGS of AV` first and then566

applying QSVD to a small upper triangular factor.567

The accuracy of face recognition and running CPU time of SpFDQ(`, t) and prandsvdQ algo-568

rithms are shown in Figure 5.9. The depicted results demonstrate that SpFDQ(k, 2) is the most569

efficient one among all SpFDQ(`, t) algorithms, while prandsvdQ is a little more efficient than570

SpFDQ(k, 2) when k increases. For the recognition accuracy, prandsvdQ has higher recognition571

accuracy for most parameter values of k, while there also exists a parameter, say for k = 22,572

prandsvdQ has lower recognition accuracy than other candidate methods. That is partly because573

the sketching matrix S and random Ω are randomly generated on specific distributions, and the574

recognition accuracy is sometimes affected by the properties of some specific random matrices.575

In order to perform a fair comparison, in Table 5.2 we execute each algorithm 20 times, and576

display the average (avrg), maximal (max) and minimal (min) numbers of correctly recognized577

persons among 250 test faces for 50 persons, and the average running CPU time (avtime) is also578
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given. It is observed that when k is small, say for k ≤ 9, there exist big fluctuations on the579

recognition accuracy of SpFDQ(k,2), and the average numbers of recognized faces increase when580

the sketching size in SpFDQ(2k,2) is increased, but SpFDQ(2k,2) still has lower recognition accuracy581

than prandsvdQ. When k increases, the difference of face recognition accuracy becomes smaller,582

while for the running time, prandsvdQ is the most efficient.583

Table 5.2
Comparisons of SpFDQ(`,2) with prandsvdQ for PCA-based color image recognition problems

SpFDQ(k,2)
k 3 6 9 12 15 18 21 24 27 30

avrg 153.25 178.65 184.70 188.05 189.80 189.85 190.00 190.80 190.95 192.40
max 184 188 191 194 195 193 195 195 195 196
min 130 169 176 182 183 185 184 187 187 187

avtime 2.97 3.29 3.68 4.10 4.63 5.47 5.62 6.02 6.86 7.45
SpFDQ(2k,2)

k 3 6 9 12 15 18 21 24 27 30
avrg 161.35 178.75 184.85 190.30 189.25 190.00 188.95 190.60 190.85 191.80
max 172 186 190 194 192 192 192 193 196 196
min 150 172 180 186 186 187 186 188 186 188

avtime 3.18 3.92 4.72 5.60 6.96 7.91 9.27 10.47 12.09 13.56
prandsvdQ

k 3 6 9 12 15 18 21 24 27 30
avrg 174.35 187.10 190.55 191.30 190.65 191.15 192.65 193.45 192.25 192.85
max 182 195 201 198 194 198 196 198 197 197
min 164 182 183 185 185 184 187 188 188 189

avtime 3.02 3.30 3.44 3.70 4.11 4.44 4.73 5.02 5.50 5.82

6. Conclusion. In this paper we have presented the randomized QSVD algorithm for quater-584

nion low-rank matrix approximation problems. For large scale problems with a small target rank,585

the randomized algorithm compresses the size of the input matrix by the quaternion normal586

distribution-based random sampling, and approximates dominant SVD triplets with good accu-587

racy and high efficiency. The approximation errors of the randomized algorithm are illustrated by588

the detailed theoretical analysis and numerical examples. Compared to the Lanczos-based QSVD589

(lansvdQ) and fast frequent direction via subspace embedding (SpFDQ) algorithms, the random-590

ized algorithms display their effectiveness and efficiency for PCA-based color image recognition591

problems.592
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