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RANDOMIZED QUATERNION SINGULAR VALUE DECOMPOSITION FOR
LOW-RANK MATRIX APPROXIMATION *

QIAOHUA LIUt, SITAO LING!, AND ZHIGANG JIAS

Dedicated to Professor Musheng Wei on the occasion of his 75th birthday

Abstract. This paper presents a randomized quaternion singular value decomposition (QSVD) algorithm for
low-rank matrix approximation problems, which are widely used in color face recognition, video compression, and
signal processing problems. With quaternion normal distribution-based random sampling, the randomized QSVD
algorithm projects a high-dimensional data to a low-dimensional subspace and then identifies an approximate range
subspace of the quaternion matrix. The key statistical properties of quaternion Wishart distribution are proposed
and used to perform the approximation error analysis of the algorithm. Theoretical results show that the randomized
QSVD algorithm can trace dominant singular value decomposition triplets of a quaternion matrix with acceptable
accuracy. Numerical experiments also indicate the rationality of proposed theories. Applied to color face recognition
problems, the randomized QSVD algorithm obtains higher recognition accuracies and behaves more efficient than
the known Lanczos-based partial QSVD and a quaternion version of fast frequent directions algorithm.

Key words. randomized quaternion SVD; quaternion Wishart distribution; low-rank approximation; error
analysis.
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1. Introduction. Low-rank approximations of quaternion matrices play an important role
in color image processing area [16,17], in which color images are represented by pure quaternion
matrices. Based on the color principal component analysis [43], the optimal rank-k approxima-
tions preserve the main features and the important low frequency information of original color
image samples. The core work of generating low-rank approximations is to compute the dominant
quaternion singular value decomposition (QSVD) triplets (i.e., left singular vectors, singular values
and right singular vectors). However, there are still few efficient algorithms to do this work when
quaternion matrices are of large-scale sizes. No rigorous error analysis of computed approxima-
tions have also been given in the literature. In this paper, we present a new randomized QSVD
algorithm and propose important theoretical results about the feasibility and the reliability of the
algorithm.

In these years, quaternions [12] and quaternion matrices [41] have been more and more attrac-
tive in many research fields such as signal processing [6], image data analysis [2,19], and machine
learning [28,43]. Because of non-commutative multiplication of quaternions, quaternion matrix
computations contain more abundant challenging topics than real or complex matrix computa-
tions. The algorithms designed for quaternion matrices are also feasible for the real or complex
case, but the converse is not always true. As we are concerned on, QSVD triplets can be achieved
in three totally different ways. The first one is to call the svd command from Quaternion toolbox
for Matlab (QTFM) developed by Sangwine and Bihan in 2005. For the principle of the algo-
rithm, we refer to [32]. The codes in QTFM are based on quaternion arithmetic operations and
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2 Q. LIU, S. LING, Z. JIA

is less efficient for large matrices. The second one is to use the real structure-preserving QSVD
method [38]. Its main idea is to perform real operations on the real counterparts of quaternion
matrices with structure preserving scheme. In practical implementations, only the first block row
or column of the real counterpart is explicitly stored and updated, and the other subblocks are
implicitly formulated with the aid of the algebraic symmetry structure. The real matrix-matrix
multiplication-based BLAS-3 operations make the computation more efficient. The concept of
structure-preserving was firstly proposed to solve quaternion eigenvalue problem in [13], and then
extended to the computations of quaternion LU [22,37] and QR [21] factorizations. Recently,
Jia et al. [14] developed a new structure-preserving quaternion QR algorithm for eigenvalue prob-
lems of general quaternion matrices, by constructing feasible frameworks of calculation for new
quaternion Householder reflections and generalized Givens transformations. For more issues about
structure-preserving algorithms, we refer to two monographs [38] by Wei et al. and [18] by Jia.
The above two ways are based on the truncation of the full QSVD and the computational cost is
expensive in computing all singular values and corresponding left and right singular vectors. Thus
they are not feasible for large-scale quaternion matrices. Jia et al. [15] proposed a promising iter-
ative algorithm to compute dominant QSVD triplets, based on the Lanczos bidiagonalization [8]
with reorthogonalization and thick-restart techniques. This method is referred to as the lansvdQ
method. The superiority of lansvdQ method over the full QSVD was revealed in [15], through a
number of practical applications such as color face recognition, video compression and color image
completion. When the target rank k increases, the matrix-vector products at each iteration of
lansvdQ make the computational cost increase. Is there any method with lower computational cost
for the quaternion low-rank approximation problem?

In the past decade, randomized algorithms for computing approximations of real matrices have
been receiving more and more attention. Randomized projection and randomized sampling are two
commonly used techniques to deal with large-scale problems efficiently. Randomized projection
combines rows or columns together to produce a small sketch of M € R™*"(m > n) [33]. Possible
techniques include subspace iterations [10], subspace embedding (SpEmb) [27], frequent directions
(FD) [7] and etc. Recently, Teng and Chu [34] implanted SpEmb in FD to develop a fast frequent
direction (SpFD) algorithm. Through the experimental results on world datasets and applications
in network analysis, the superiority of SpFD over FD is displayed, not only in the efficiency, but
also in the effectiveness.

Randomized sampling finds a small subset of rows or columns based on a pre-assigned prob-
ability distribution, say, by pre-multiplying M on an n x ¢ (¢ < n) random Gaussian matrix (2,
and identifies a low-dimensional approximate range subspace of M, after which a small-size matrix
approximation is also obtained. The idea of a randomized sampling procedure can be traced to a
2006 technical report of paper [26], and later analyzed and elaborated in [5,10,11,25,31,34,40,42].
They are computationally efficient for large-scale problems and adapt to the case that the nu-
merical rank is known or can be estimated in advance. When the singular values have relatively
fast decay rate, the algorithm is inherently stable. For singular values with slow decay rate, the
randomized algorithm with power scheme will enhance the stability of the algorithm.

In this paper we consider the randomized sampling algorithm for quaternion low-rank matrix
approximations. The targeted randomized QSVD algorithm is expected to have lower compu-
tational cost and to be appropriate for choosing a small number of dominant QSVD triplets of
large-scale quaternion matrices. It seems natural to utilize the research framework in [11] and gen-
eralize the real randomized SVD algorithm to quaternion matrices. Unfortunately, the theoretical
analysis is long and arduous. It involves doses of statistics related to quaternion variables and
several difficulties block us to go further.

e What kind of quaternion distribution is appropriate for the randomized QSVD algorithm?
The proper quaternion distribution should be invariant under unitary transformations,
which will bring convenience for approximation error analysis of the proposed algorithm.
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RANDOMIZED QUATERNION SINGULAR VALUE DECOMPOSITION 3

However, few studies have been seen on the probability distribution of quaternion variables
in the literature.

e What are the distributions of the norms of the pseudoinverse Qf of quaternion random
Gaussian matrix €7 Due to the non-commutative multiplication of quaternions, quater-
nion determinant and integrals could not be defined similar to the real case. Hence, real
probability theories could not be directly used to evaluate the norms of quaternion random
Gaussian matrices.

e What are statistical evaluations of spectral norms of €2 and its real counterpart? The real
counter part Tq (see (2.1)) is a non-Gaussian random matrix. It is necessary to develop
novel techniques to evaluate the expectation and probability bounds of |||z and its scaled
norms.

Based on the investigations on key features of €2, we will give expectation and deviation bounds
for approximation errors of the quaternion randomized SVD algorithm. To the best of our knowl-
edge, these results are new and no developments have been made on the proposed algorithm and
theories about quaternion matrix approximation problems. With high probability, the theoretical
results show that the low rank approximations can be computed quickly for quaternion matrices
with rapidly decaying singular values. Through the numerical experiments, the superiority of the
proposed algorithm will be displayed, in comparison with the quaternion Lanczos method and a
quaternion version of SpFD [34].

The paper is organized as follows. In Section 2, we review some preliminary results about
quaternion matrices and randomized SVD for real matrices. The randomized QSVD algorithm
and implement details for low-rank approximation problems will be studied in Section 3. In
Section 4, the theoretical analysis is provided for the approximation errors. In Section 5, we test
the theories and numerical behaviors of the proposed algorithms through several experiments and
show their efficiency over Lanczos-based partial QSVD algorithm and quaternion SpFD for color
face recognition problems.

Throughout this paper, we denote by R™*™ and Q™*" the spaces of all m x n real and
quaternion matrices, respectively. The norm ||-||, denotes either the spectral norm or the Frobenius
norm. For quaternion matrix A € Q™*", A' is the pseudoinverse of A, and R(A) represents the
column range space of A. tr(-) denotes the trace of a quaternion or real square matrix, and
etr(-)=exp(tr(-)) means the exponential operation of the trace. Let P{-} denote the probability of
an event and E(-) denote the expectation of a random variable. For differentials dy;,dys of real
random variables y1, y2, dy; Adys denotes the non-commutative exterior product of dy;, dy2, under
which dy; A dys = —dys Ady; and dy; Ady; = 0.

2. Preliminaries. In this section, we first introduce some basic information of quaternion
matrices and quaternion SVD. The basic randomized SVD for real matrices is described thereafter.

2.1. Quaternion matrix and QSVD. The quaternion skew-field QQ is an associative but
non-commutative algebra of rank four over R, and any quaternion q € Q has one real part and
three imaginary parts given by q = qo + ¢1i + ¢2j + g3k, where qo, q1, ¢2,¢3 € R, and i, j and k are
three imaginary units satisfying i> = j2 = k? = ijk = —1. The conjugate and modulus of q are
defined by q* = g0 — q1i — q2j — gsk and |q| = /@2 + ¢} + ¢% + ¢3, respectively.

For any quaternion matrices P = Py + Pii+ Poj+ Psk € Q™*", Q = Qo + Q1i+ Q2+ Qsk €
Qm™*", denote Q* = QF — QTi— QTj — Q¥k and the sum of P,Q as P+ Q = (P + Qo) + (P +
Q1)i + (P2 + @Q2)j + (Ps + Q3)k, and for quaternion matrix S € Q™*¢, the multiplication QS is
given by

(QoSo — Q151 — Q252 — Q353) + (QoS1 + Q150 + Q253 — Q3.52)i +
(QoS2 — Q183 + Q250 + Q351)j + (QoS3 + Q152 — Q251 + Q350)k.
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For Q € Q™*", define the real counterpart Tq and the column representation Q. as

Qo Q1 —Q2 —Q3 Qo

| @ Qo Q3 Q2 | @

(2.1) Tao= Q2 Q3 Qo —-Q1 |’ Q= Q2
Qs —Q2 Q1 Qo Q3

Note that Tq has special real algebraic structure that is preserved under the following operations
[13,21]:

(2.2) Tk1P+k}2Q =k Tp + kQTQ (kl, ko € R), TQ* = TT, TQS = TQTs.

For determinants of quaternion square matrices, a variety of definitions have emerged in terms
of the complex and real counterparts to avoid the difficulties caused by the non-commutativity
of quaternion multiplications; see [20,30,41] and reference therein. However these definitions do
not coincide with the standard determinant of a real matrix. In this paper, we only consider the
determinant of Hermitian quaternion matrices, which was defined by Li [20] as

(2.3) det(Q) = A\A2--- Ay, Q€ Q™ " is Hermitian,

where A1,..., A\, are eigenvalues of Q, and they are proved to be real [13,20]. This definition
in (2.3) is consistent with the determinant of a real symmetric matrix, but does not adapt to
the quaternion non-Hermitian matrices, since a quaternion non-Hermitian matrix has significantly
different properties in its left and right eigenvalues, and there is no very close relation between
left and right eigenvalues [41]. When Q is Hermitian, the left and right eigenvalues are coincided
to be the same real value. Throughout this paper we use det(Q) to distinguish it from the
real determinant symbol “det”. Moreover, if Q is positive semidefinite so that A; > 0, then the
quaternion determinant det(Q) can be represented in terms of a determinant of a real matrix [20]
as

(2.4) det(Q) = [det(Tq)]l/4 , Q is Hermitian and positive semidefinite.

DEFINITION 2.1. The spectral norm (2-norm) of a quaternion vector x = [x;] € Q™ is ||x||2 :=
Vi 1xil?. The 2-norm of a quaternion matriz A = [a;;] € Q™*™ are ||A|z := maxo(A), where
o(A) is the set of singular values of A. The Frobenius norm of A is ||[Allp = (X |ay;|?) 12 _

1]

[tr(A*A)]Y2 .
QSVD was firstly proposed in [41, Theorem 7.2] and the partial QSVD was presented in [15].

LEMMA 2.2 (QSVD [41]). Let A € Q™*™. Then there exist two quaternion unitary matrices
U e Qm*™ and V € Q™™ such that U*AV = X, where ¥ = diag(o1,02,...,01) € R™*™ with
o; > 0 denoting the i-th largest singular value of A and | = min(m,n).

From [15], the optimal rank-k approximation of A is given by Ay = UX; V5, where Uy and Vy, are
respectively submatrices of U and V by taking their first k& columns, and ¥, = diag(oy,...,o0k).
Furthermore, by the real counterpart of QSVD: T{FJTATV = Ty, where Ty and Yy are real
orthogonal matrices, and Ty = diag(%, ¥, X, ¥). As a result, spectral and Frobenius norms of a
quaternion matrix can be represented by the ones of real matrices as below

1
(2.5) 1Al = Tallz,  [[AllF = 5 Tallr = [|Acllr.

Moreover, for consistent quaternion matrices A and B, it is obvious that

(2.6) |AB|r < [|Al2|Bllr, [AB|r < [Al#[B2.
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2.2. Real randomized SVD and low-rank approximation. Given a real matrix M €
R™*" randomized sampling methods [11,23,25,26,39] apply the input matrix M onto a diverse set
of random sample vectors Q = [w; ... wy], expecting M) to capture the main information of the
range space of M and to maintain safe approximation error bounds with high probability. In [11],
a random Gaussian matrix {2 is used. By applying M to €2, and then computing the orthogonormal
basis @ of the range space of M) via skinny QR factorization in Matlab:

) = randn(n, /), [Q,~] = qr(Y,0), where Y = MQ,

one can get an approximate orthogonal range space of M. Here ¢/ = k + p and p is a small
oversampling factor (say, p = 5). In this case, the matrix M is approximated by M ~ QN, where
QQT is an orthogonal projector and the matrix N := QT M is of small size £ x n. The problem
then reduces to compute the full SVD of N as N = USVT. Therefore M ~ QN = QU S VT, and
once a suitable rank k£ has been chosen based on the decay of S, the low-rank SVD factors can be
determined as

U, =QU(:1:k), Sp=801:k1:k), and V,=V(,1:k)

such that My ~ UkS’kaT. We refer to the above method as the randomized SVD.
The idea is simple, but whether the projection QQ7 can capture the range of M well depends
not only on the property of random matrix, but also on the singular values s; of the matrix M we

are dealing with. It was shown in [11, Theorems 10.5 and 10.6] that for p > 2, the expectation of
the approximation error satisfies

min(m,n) 1/2
BN~ QQ)M Il < (14 /5 s + 25T (T 2 )
Jj=k+
min(m,n) 1/2

(2.7) 12
BN - QQN)Mr < (1+35) (
J=k+1

It is observed that when the singular values of M decay very slowly, the method fails to work
well, because the singular vectors associated with the tail singular values capture a significant
fraction of the range of M, and the range of Y = M as well. Power scheme can be used to enhance
the effect of the approximation, i.e., by applying power operation to generate Y = (MMT)IMQ,
where (M M7T)4M has the same singular space as M, but with a faster decay rate in its singular
values.

3. Quaternion randomized SVD. In this section, we develop the randomized QSVD
(randsvdQ) algorithm in Algorithm 3.1 and present some measures to improve the efficiency of
the algorithm in practical implementations.

How to choose the random test matrix in the algorithm? Consider a simple case about the
rank-1 approximation A, = oquyv] of the quaternion matrix A. It is easy to prove that {y.,z.} =
{uy, v} is the maximizer of - mlfﬁ . ly*Az|, and |y*z| = |y*Az| approximates o1 for y = uy
Yi2=llzll2=
and z = Avy € R(A), in which the columns of A are spanned with quaternion coefficients. In
order to capture the main information of R(A) spanned by dominant left singular vectors of A, it
is natural to use a set of n x 1 quaternion random vectors = [w™®) ... w®)] to span the columns
of A, with random standard real Gaussian matrices as the four parts of {2. That means the n x ¢
quaternion random test matrix

(3.1) Q= Qo + Qi + Doj + sk,

where the entries of Qg, 1, Q2,3 are random and independently drawn from the N (0, 1)-normal
distribution. The detailed description of randomized QSVD is given in Algorithm 3.1.
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Algorithm 3.1 (randsvdQ) Randomized QSVD with fixed rank

(1) Given A € Q™*™, choose target rank k, oversampling parameter p and the power scheme
parameter g. Set £ = k + p, and draw an n x ¢ quaternion random test matrix € as in (3.1).
(2) Construct Yo = AQ and for ¢ =1,2,..., ¢, compute

Yi = A*Yi_l and Yz = AYz

3) Construct an m x ¢ quaternion orthonormal basis Q for the range of Y, by the quaternion QR
g q

decomposition and generate B = Q*A. o

(4) Compute the QSVD of a small-size matrix B: B = UXV*.

(5) Form the rank-k approximation of A: ;‘;l(cq) = ﬂkf]kv,’:, where

Ui, = QU(:,1: k), Sr=21:k1:k), Vi=V(,1:k).

To implement Algorithm 3.1 efficiently, we recommend fast structure-preserving quaternion
Householder QR [14,21] and QSVD algorithms [21,38]. Based on structure-preserving properties
(2.2) of the real counterpart of a quaternion matrix, the essence of fast structure-preserving al-
gorithm is to store the four parts Qg, @1, Q2,3 of a quaternion matrix Q only. When the left
(or right) quaternion matrix transformation T; (or T,) is applied on Q, it is equivalent to imple-
menting the real matrix multiplication Yo, Tq (or Y Yr,). In order to reduce the computational
cost, only the first block column (or row) of Tq is updated and stored. Other blocks in the up-
dated matrix are not explicitly stored and formed, and they can be determined according to the
real symmetry structure. For example, in Step 2 of Algorithm 3.1, the four parts of quaternion
matrices Yo, Y, and Y; can be found from the computations of matrices

(Yo)e = Taf2, (Yi)c =TA(Yic1)e, (Yi) =7Ta (?i)a

respectively, and in Step 3, the four parts of quaternion matrix B can be found from B, = TgAC.
Note that the computations of (Yg). := T a2 and the quaternion matrix multiplication Yo = A
have the same real flops, while the former utilizes BLAS-3 based matrix-matrix operations better,
and hence leads to efficient computations.

Once Y is obtained, the fast structure-preserving quaternion Householder QR algorithm [21]
can be applied to get the orthonormal basis matrix Q. Here the quaternion Householder transfor-
mation H to reduce a vector u € Q° into Hu = ae; in the QR process takes the form

u-—ae a:{ 7%”11”27 u #07

H=1I,—-2vv*, with v=—-—— .
lu —aeq |2 —|lull2, otherwise,

where e; is the first column of the identity matrix I5.

After computing B = Q*A in Step 3, the structure-preserving QSVD [38] of B first factorizes
B into a real bidiagonal matrix B [21], with the help of Golub and Reinsch’s idea [9] and quaternion
Householder transformation Hy [21]:

a*

(3.2) Hou = diag( 1) Hu = [ale; = [[uller.

lal’

Afterwards, the standard SVD of the real matrix B completes the QSVD algorithm.

Remark 3.1. The basis matrix Q in the algorithm is designed to approximate the left dominant
singular subspace of A. To get Q, the structure-preserving quaternion Householder QR has better
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numerical stability through our numerous experiments, but with more computational cost since
all columns of a unitary matrix are computed. Structure-preserving quaternion modified Gram-
Schmidt (QMGS) [38, Chp. 2.4.3] is an economical alternative for getting the thin orthonormal
factor Q, but might lose the accuracy during the orthogonalization process when the input matrix
has relatively small singular values. However, when we are dealing with low-rank approximation
of a large input matrix, only a small number of dominant SVD triplets are taken into account, and
QMGS sometimes is sufficient to get an orthonormal basis with expected accuracy (See Example
5.2 in Section 5).

Remark 3.2. If ¢ is much smaller than n, i.e., B is a “short-and-wide” matrix, the direct
application of QSVD on B might lead to large computational cost. Alternatively, we recommend
implementing the QMGS of B* as

(33) B" = Qlfil, for Ql € ane, Rl S QZXZ,

and then computing the QSVD of the £ x £ quaternion matrix R, as R1 =T Slzl, from which the
QSVD of B is given by B = USV* for U = Z,,5>=5 and V = Q1T1 We call the corresponding
method the preconditioned randomized QSVD (prandsvdQ).

Remark 3.3. If A is Hermitian, it can be approximated as [11, (5.13)]:
(3.4) A~ QQ*AQQ".

Then we form the matrix B = Q*AQ, and use the structure-preserving eigQ algorithm in [13] to
compute the eigen-decomposition of B. The corresponding algorithm is referred to as the randeigQ
algorithm in the context.

Note that both randeigQ and prandsvdQ reduce a large nxn problem into a smaller £x £ problem.
The essence of randeigQ computes the eigen-decomposition of a Hermitian matrix Q*AQ, while
the prandsvdQ algorithm of A computes the QSVD of R, = Q{AQ For large problems with
¢ < n, the cost of the two randomized algorithms is dominated by the quaternion QR procedure
for getting Q and Q1, and prandsvdQ will cost more CPU time for the extra computation of Ql,
but might be more accurate in estimating the eigenvalues of A. That is because the columns of Q:
span the range space R(AQ), and it is exactly R(A2€), while Q is the low-rank basis of R(AQ),
therefore R(Ql) might have a better approximation of the left dominant singular subspace than
R(Q). We will compare the numerical behaviors of the two algorithms in Section 5.

For the error approximation of randeigQ, if for some parameter ¢, ||(1,, — QQ*)A||, < &, then
by [11, (5.10)], the error of approximating A is given by ||A — QQ*AQQ"||, < 2¢, where € will be
evaluated in next section.

Remark 3.4. When the power scheme is not used in Algorithm 3.1 (i.e. ¢ = 0), note that the
input matrix A in Algorithm 3.1 is revisited. However, in some circumstance, the matrix is too
large to be stored. Using a similar technique to [4], we develop a method that requires just one
pass over the matrix. For the input Hermitian matrix A, according to (3.4) and B = Q*AQ, the
sample matrix

Y =AQ~QQ"AQQ'Q = QBQ™(,

and the approximation of the matrix B could be obtained by solving BQ*Q ~ Q*Y.

If A is not Hermitian, analogue to [11, (5.14)-(5.15)], the single-pass algorithm can be con-
structed based on the relation A ~ QQ*AQQ", where Q is the low-rank basis of R(A*) by
applying A* on a random test matrix Q. The matrix B = Q* AQ can be approximated by find-
ing a minimum-residual solution to the system of relations BQ Q = QYY, B*Q*Q Q Y for
Y=AQand Y = A*Q.

This manuscript is for review purposes only.
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4. Error analysis. The error analysis of Algorithm 3.1 consists of two parts, including the
expected values of approximation errors ||(I — QQ*)A|l, = Hgl(ﬁzp — A||, in spectral or Frobenius
norm, and the probability bounds of a large deviation as well. The argument relies on special
statistical properties of quaternion test matrix €2. Specially, we need to evaluate the Frobenius
and spectral norms of  and QF.

Our theories are established based on the framework of [11]. To start the analysis, we require
to use the information of quaternion normal distributions, chi-squared and Wishart distributions.
Some of results are provided in the literature, e.g. [20,24], while some other information needs a
rather lengthy deduction. In Section 4.1, we first summarize the main results in Theorems 4.1-4.3
to show the properties of quaternion randomized algorithm. After investigating the statistical
properties of quaternion distributions in Section 4.2, we will give the detailed proofs of Theorems
4.1-4.3 in Section 4.3.

4.1. Main results.

THEOREM 4.1. (Average Frobenius error of the randsvdQ algorithm) Let the QSVD of the mxn
(m > n) quaternion matriz A be

_ * __ ¥ 0 VT kxk nxk
A =UxV U[O &HV;]’ o e RE¥k v, € Qrek,

where the singular value matriz ¥ = diag(o1,09,...,0,) with o1 > 09 > -+ > 0, > 0, k is the
target rank. For oversampling parameter p > 1, let ¢ = 0, { = k + p < n and the sample matrix
Yo = AQ, where Q is an n X £ quaternion random test matriz as in (3.1), and 1 = ViQ is
assumed to have full row rank, then the expected approximation error for the rank-(k 4+ p) matrix

KI(COJZP via the power scheme-free randsvdQ algorithm satisfies

1/2

~0) 4k \'? )
ElAL, —Allr < <1+4p+2> Zaj
Jj>k

THEOREM 4.2. (Average spectral error of the randsvdQ algorithm) With the notations in The-
orem 4.1, the expected spectral norm of the approzimation error in the power scheme-free algorithm
satisfies

NORE < k 3ev/4k +4p + 2 2 1/2
(4.1) EJAL), — Alls < (1 + 3, /T)+2 ) Tt b (20—]) .

If ¢ > 0 and the power scheme is used, then for the rank-(k 4+ p) matriz Agﬁp,
satisfies

N k 2¢+1 , dev4k +4p + 2 2(2q+1
E|AY), — Allz < <1+3,/4p+2)ak11 t = o7t

j>k

the spectral error

1/2 1/(2¢9+1)

THEOREM 4.3. (Deviation bound for approzimation errors of the randsvdQ algorithm) With
the notations in Theorem 4.1, we have the following estimate for the Frobenius error

~ 3k 1/2 evak +4p +2
42 A A <(1 ¢ —)( 2) (VIR ED T 2
4 IRL, - ales (e[ 2) (S4) T

J
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except with the probability 2t—*P + e=%/2. For the spectral error,

1/2

-~ (0) 3t 3k 9
(4.3) AL, —All2 < (1 T3 1 +uttkp | Ok1 + 3t0k,p 2%’ ;
J

except with the probability 2t~ + ¢=¥"/2, in which Nhep = 87\/44’“1:2"“.

Theorems 4.1-4.3 reveal that the performance of the randomized algorithm depends strongly
on the properties of singular values of A. When the singular values of A have fast decay rate, it
is much easier to identify a good low-rank basis Q and provide acceptable error bounds. However,
when the singular values of A decay slowly, the constructed basis Q may have low accuracy, and
the power scheme will increase the decay rate of the singular values of C = (AA*)?A, and generate
a better low-rank basis matrix.

4.2. Statistical analysis of quaternion random test matrix. In this subsection, we aim
to investigate Frobenius and spectral norms of the quaternion test matrix G and its pseudoinverse,
where

(44) G:G()-l-Gli-i-ng-i-ngEmen, m < n,

and Gy, . . ., G35 are standard Gaussian matrices whose entries are random and independently drawn
from the normal distribution N (0, 1). Note that the norms of ||GT||, for a = 2, F are closely related
to the measure of (GG*)_l, where the matrix GG* is named as a quaternion Wishart matrix.
As a result, we first recall some well known results about the quaternion normal distribution and
Wishart distribution.

DEFINITION 4.4 ([35]). Letz = zp+ 211+ 22+ 23k be a random m x 1 quaternion vector with
zero mean. Define the quaternion covariance matriz 3, = cov(z,z) = E(zz*) as

3, = E[(20 + 211 + 20§ 4+ 23k) (2 — 271 — 23§ — 23 k)]
= Yoo + Z11 + Moo + X33 + (=01 + L1o — Yoz + X3)i
+(—02 + 213 + X20 — B31)j + (—Zo03 + 30 — X12 + Xa1 )k,

in which ¥;; = cov(z;, z;) € R™*™ is the real covariance of random vectors z; and z;.

In particular, when the four parts zg, 21, 22, 23 of the quaternion vector z are real independent
random vectors drawn from the normal distribution N (0, I,,,), then the quaternion random vector
z follows the quaternion normal distribution N(0,41,,) law, with the possibility density function
(pdf) [35]: pdf(z) = (2m)~*™etr(—1z*z). We remark that when z ~ N(0,41,,,), ||z||3 represents the
sum of 4m independent real variables and each variable follows N(0,1) law. Thus by the concept
of real chi-squared distribution, ||z||3 follows real chi-squared distribution x?2,, with 4m degrees of
freedom.

The following lemma indicates that the quaternion normal distribution N(0,41,,) is unitarily
invariant.

LEMMA 4.5 ([20]). For an m x 1 quaternion random vector z ~ N(0,41,,), let y = Bz + u,

where B is an m-by-m nonsingular quaternion matriz, and u is an m-by-1 quaternion vector, then
y ~ N(u,4BB").

The rigorous definition of the Wishart distribution is given as follows.

DEFINITION 4.6 ([35,36]). Let Z = [zy z2 ... 2], where z1,...,2, are m X 1 random
independent quaternion vectors drawn from the same distribution, i.e., z; ~ N(0,X)(1 < i < n).

This manuscript is for review purposes only.



10 Q. LIU, S. LING, Z. JIA

307 Then A = ZZ* € Q™*™ is said to have the quaternion Wishart distribution with n degrees of
308  freedom and covariance matriz . We will write that A ~ W, (n, X).

309 Note that the matrix 3 could be quaternion or real. In this paper, we are only interested in
310 the real case and use the notation ¥ for a distinguishment. The matrix A is singular when n < m,
311 and the pdf of A doesn’t exist in this case. When m < n, the pdf [20,36] (See also [24, Theorem
312 4.2.1]) of A exists. Before giving the pdf, we first recall the definitions of exterior products, which
313 are vital for the volume element of a multivariate density function.

DEFINITION 4.7 ([20,29]). For any m x n real matriz X, let dX = [dz,;] denote the matriz

of differentials, define the mn-exterior product {dX} of the mn distinct and free elements in X

as {dX} = Adz;. For any m x n quaternion matric X = Xy + Xqi + Xoj + Xzk, denote
i,j

dX = dX, —|—Xm i+dXs j+dX;3 k, and define {dX} = {dXo} A {Xm} A\ {dXQ} AN {ng} If X is
Hermitian, then Xg is symmetric, while Xo, X3, X4 are skew-symmetric, and {dX} takes the form
{dX} = ( /\d(X())Zj) A\ ( A/\Ad(Xl)ij) AN ( /\d(XQ)ZJ) A\ ( /\d(Xg)U>
i<j i<j i<j i<j
314 In the definition, the exterior product of differential form in different order might differ by
315 a factor £1. Since we are integrating exterior differential forms representing probability density

316 functions, we ignore the sign of exterior differential forms for the sake of convenience. Based on
317 the notation for the exterior product, the pdf of the quaternion Wishart matrix is given as follows.

318 LEMMA 4.8 (][20,24)). Let the quaternion Wishart matriz A ~ W, (n,X), then the pdf of A
319 satisfies

320 (4.5) pdf(A){dA} = B [det(X)] 72" [det(A)2" ™ etr(—25 1 A){dA},

in which {dA} represents the volume element of this multivariate density function, and
m -1
Bmn = 92mn _—m(m—1) (HF(2(n -1+ 1))) )
i=1

321 with the Gamma function T'(+) defined by I'(x) = / t*~le~tdt(z > 0).
0

322 The properties of the quaternion Wishart matrix are given as follows.

323 THEOREM 4.9. Given A ~ W,,(n,X).

324 (i) For M € QF*™ with rank(M) = k, we have MAM* ~ W (n, MEM*).
(ii) Partition

A11 A12 E11 E12
A= Y=
|: A—TQ A22 :| ’ |: 221 E22 :| ’

in which A11 S Qka, 211 € Rka. Let A1172 = A11 - A12A2_21AT2, 21172 = 211 — 21222_21221,
then
Ang~Win—m+k,311,2).
Proof. (i) Note that A = Y z;z¥ with z; ~ N(0,%). Tt follows that z; := 2%"1/2z; ~
i=1
N(0, 41,,) from the definition of quaternion covariance. By applying Lemma 4.5, Mz; = %(MEl/Qii) NI
N(0,MXM*), and hence

MAM® =Y " Mz;(Mz;)* ~ Wy (n, MEM").
i=1
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I 0
*A2_21AT2 Ik
Bys = Ay, through the following transformation

Al Ap Iy, 0 ] { A B ]
4.6 AZ = * 1A = ' .
(4.6) { 1o Aa ] [ A A Tk 0 By,

(ii) Let Z = , and change the variables of A into Aj; 2, Bi2 = Ajs and

The quaternion matrix Z is not Hermitian, and det(Z) is not well defined. In order to express
det(A) in terms of det(A1; o) and det(Ba2), we consider the transformation Z*AZ to get Z*AZ =
diag(Aq1,2, Baa) = F, where A;; 2 and Bgy are Hermitian and positive definite matrices.

Take the real counter parts on both sides of Z* AZ = F, the properties in (2.2) gives Y2 Ta Yz =}
T and the standard determinant of real matrix YT satisfies

(4.7) det(Tp) = (det(Tz))” det(Ta),

where by writing the (2,1)-subblock of Z as —A5; A}, = Ag + Aji + Asj + Azk, and using the
identity matrices in block columns 2,4,6,8 of Tz:

I 0] o o] o ol 0o o0
Ay I|—-A; 0| -4, 0| —-43 0
0 0] I 0] 0 o0 0 O
T, — A, 0| Ay I|—-43 0| Ay O
z 0 0] 0 O] I 0] 0 0
Ay 0| 43 0| Ay I|-4; 0
0 0] 0 O] o o I 0O

| A3 0| -4y 0| Ay 0| Ay I |

to eliminate the subblocks +A; to zero, we get det(Yz) = det(l4,,,) = 1. Thus in (4.7), det(Ya) =
det(Tx). The applications of (2.4) and the definition (2.3) to this equality give

(48) det(A) = det(F) = det(AH,g)det(Bm).

For the real matrix ¥, it is obvious that

(49) det(E) = det(Egg) det(ElLQ).
B e O — -1 — Cii Ci2 lude that Oy = N1 d
y putting C = =1 0y O |7 we conclude that Cy; = 25,5 an

Co1 Co Bi, By,

_ Cn C A5 +B3B,,;Bi, B
1 _ 11 12 11,2 1299 12 12
g A (| Il )
= tl“(CuAle) + tI“(Al) +tr(Aq) = tr(Efll)QAle) +tr(Aq) + tr(As),

where Ay = £}, B1:B3, B}, + C12Bjy, Ay = C51B1s + C2oBos.
Note that the differential of A1oA5; A%, satisfies

d(A12Azy AL) = (dAw)AS AL, + Ap(dAy AT, + ApAgy (dAT),
in which the differential d(A,;') can be derived by differentiating Ay, Agy = I,,_}, as

(dAS;) Az + As) (dAg) =0, or equivalently, dAL = —AL' (dAgg)AL) .

This manuscript is for review purposes only.



346

351

360

12 Q. LIU, S. LING, Z. JIA

Since the exterior products of repeated differentials are zero, we then get {d(A12Az A%y} A
{dAlg} A {dAQQ} = 0. Thus

{dA} = {dA;} A {dA R} A {dAg} = {d(A11 — A12ALAL) YA {dA R} A {dAg}

(4.11) = {dAj12} A {dB12} A {dBaa}.

Substituting (4.8)-(4.11) into pdf(A){dA} in Lemma 4.8, we obtain
(4.12)

pdf(A){dA} = S ([det(S11,2)] " [det(Ar2)" "™ etn(=257/, A0 2))
X ([det(Zgg)]_Q” [det(Bagy)2" ™ F! etr(—2A1)etr(—2A2)) {dA112} A {dB12} A {dBas 1,

from which we see that A2 is independent of Bis, Baa, because of the density function factors.
Notice that Aq112 is k x k, and [det(AH,g)]Q("_m)’Ll = [det(A1172)]2((n_m+k)_k)+1. Moreover,
the terms in (4.12) including A;; 2 have close relations to the pdf of a Wishart matrix, therefore
we can find the pdf of A1 2 from pdf(A) so that pdf(Aqq 2) takes the form

Brn—mrldet(S11,2)] 72 R [det (A o) TR o (28T Ay ),

which means Aq1 2 ~ Wg(n—m+k, 11 2). The remaining terms in (4.12) correspond to the joint
pdf of B1a, Bao, whose distributions will not be considered here. O

Theorem 4.9 includes the properties of a real Wishart matrix [29, Theorems 3.2.5 and 3.2.10]
as special cases. With Theorem 4.9, the expectation of ||GT||2 is deduced in the following theorem.

THEOREM 4.10. Let the quaternion random matric G € Q™*™(m < n) be given by (4.4).
Then the expectation of |GT||% satisfies

m

E|GT|%2 = ————.
I 4n—m) +2

Proof. It is obvious that each column in G follows N(0, 41,,) and

(4.13) EIGT =E(tr (GG") ™)) =ED (] A7ley) =Y E(ef A'ey),
i=1 i=1
where e; is the i-th column of the identity matrix I,,, and A = GG* ~ W, (n,41,,).
For each fixed 7, let II; ; be the permutation matrix obtained by interchanging columns 1,¢ in

Cii Cy2 . 1x1
Coyi Co } with C1; € Q* %, then C

W..(n,41,,) by Theorem 4.9(i). Moreover, (elTA_lei)_l = (e{C_lel)_l = C;; — C12C,, Cay.

According to Theorem 4.9(ii), (el A~ 'e;) oW, (n —m+ 1,4), indicating that there exists
an (n —m + 1)-dimensional quaternion column vector z ~ N(0, 47, _,,11) satisfying

the m xm identity matrix, and denote C = HfiAH17i = [

1 -1
(4.14) (i A7es) =zl ~ Xiu—msn)-
By the expectation of the inverted chi-squared distribution in [11, Proposition A.8], we know that
1 1

E(efA7e)) =E = .
( ) Xi(nfm+1) 4(n—m)+2

The assertion in the theorem then follows. O
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The theorem below provides a bound on the probability of a large deviation above the mean.

THEOREM 4.11. Let the quaternion random matrizc G € Q™*™ with n —m > 1 be given by
(4.4). Then for each t > 1,

3m
4.1 PLIGHZ > ————tp <t~ 2n=m),
(1.15) {167 > 2]

Proof. According to (4.13)-(4.14), Z = ||Gt||2 = Y X; with X; = el A~ 'e; and X; ' ~
i=1

Xi(nferl)' Let ¢ = 2(n — m) and when n — m > 1, the result in [11, Lemma A.9] ensures that

Xillpe == [E(]X;|9 Voo 3 Using the triangle inequality for the L?-norm, we obtain
4n—m+1)
1200 < 301Xl < s i,
Bt 4n—m+1)
. , . E(Z9) _ —2(n—m) .
With Markov’s inequality, P {Z > vt} = P{Z9 > 491} < T <t 1=t , leading to the
desired result. 0

We now turn to the estimate of ||GT|j2. Note that |GT|s = ()\min(A))fl/Z, where A\pin(A)
denotes the smallest eigenvalue of A. We therefore need to study the pdf of the smallest eigenvalue
of A, based on the following lemma and a frame work in [3] for discussing the eigenvalues of a real
Wishart matrix.

LEMMA 4.12 ([20]). Let the quaternion Wishart matric A ~ W, (n, I,,), then the pdf for the
eigenvalues Ay > Ay > -+ > Ay, > 0 of A is given by

FOL A2 Am) = Ko [[ AT T8 = M)t e 22500,

i=1 1<J
where K7L, = 2-2mng2m [ r(z(n —it 1)>F(2(m —it 1)).
=1

The following lemma gives the lower and upper bounds of the pdf of Apin(A).

LEMMA 4.13. Let the quaternion Wishart matriv A ~ W, (n, Ly,), and fx_.. (\) denote the
pdf of the smallest eigenvalue of quaternion Wishart matriz A, then fy . (\) satisfies

(4.16) L e 2N < (V) < Ly e 22N
where

22(n7m+1) 72F 2 2
(4.17) Lonn = T T(@2n+2) .
' I'(2n —2m 4+ 4)I'(2n — 2m + 2)I'(2m)

Proof. For A > 0, let Ry 1(A) = {(A, A2y v s A1) 2 AL > -o- > Ay > A} € RIXOm1),
From the pdf of the eigenvalues of A in Lemma 4.12, we have

P (h) = / FOL Az A1, A)dAdAg -+ A1
Rp—1(N)

m—1
= Km7nef2>\)\2(n7m)+1/ 6*222";11 i H )\?(n_m)'H
R

m—1(\) i=1
m—1 m—2 —1
T =»* (A — X)) dAdAg - - d A 1.
i=1 i=1 j=i+1
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14 Q. LIU, S. LING, Z. JIA

By the inequality (A; — \)* < A, we find that

m—1
P Q) < Ky e 22 A20=m) 1 / eI A T a2+
Ryp—1(0) i=1
m—2 —1
11 H (i — X)) dAd)g - - A, o
i=1 j=i+1
=K, ne—2)\)\2(n—m)+10m n-

) )

For the lower bound, set p; = A; — A =1,...,m —1), then p3 > po >+ > piy,—1 > 0, and

m—1
Prom () = Koy e 2mA\2n=m) 1 / e 22 s T (i + A2t
Ry -1(0) i=1

i H IT (i = i) *dpadpss - - dppm

m—1

> K,, nef2mk)\2(n7m)+l/ =2 s H u?(n—m)+5
an 1(0) =1
m—2 m—1
H ) dpadps -+ dpm—1

=1 j=i+1
= Kpne —2mA 2(n— m)+1Cm,n

Note that f(A1,...,An) is a probability density function, therefore by the expression of K., ,
in Lemma 4.12,

/ e 2ELATTA T I v = A dhddg - da, = K31,
Rmr(o)

i=1 i=1 j=i+1

m—1

37% Tt then follows that C,, = K, 41 and hence the inequality (4.16) holds, where Ly, , =

379 I('j(ilz and it takes the form (4.17) by Theorem 4.9(i). The assertion in the lemma then follows.O
380 THEOREM 4.14. Let G € Q™*™ be given by (4.4). Then

4 -3
381 (4.18) P{IG[|2 > em } < u AnmmtD)

4(n — dn—m+1)(2n —2m +3)

Hor VAan—+2
382 and E”GTHQ S m
383 Proof. Note that the columns of G follow N(0,41,,) law, therefore according to Theorem

381 4.9(1), A =1GG* ~ W, (n, ).
Assume that Ay, is the smallest eigenvalue of A. By Lemma 4.13, we know that

v v
P{)\Inin < ’}/} = / f>\min (t)dt S me/o t2(n7m)+ldt
0

22(n m-+1) —2(2n + 1)2(11 m+1)1—\(2m) 72n72m+2
S T@n —2m + HTn — 2m + 2T (2m) 2n = 2m T 2

_ _2(471 + 2)271,—2m+2 ,y2n—2m+2
(2n — 2m + 3)[[(2n — 2m + 3)]?

~ T3 [ evdn +2 }2(2"72"”2) 2n—2m+2
4n—m+1)(2n —2m +3) [2n —2m +2 v

—- C,y2n72m+2’
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RANDOMIZED QUATERNION SINGULAR VALUE DECOMPOSITION 15
where we have used the Stirling’s approximation formula I'(n + 1) = n! &~ v27n(2)". Thus
1 _
P{IG |2 > 7} = P{Awin < 7%} < Or 222,

for C = C/4*"=?m+2_ The estimate in (4.18) is derived.
To estimate E||GT||2, set £ = 2(n —m + 1), then for any a > 0,

+o0 +o0 Cal—2
G o= [ P{IGH > rhdr<a+ [ P{IGI 2> r)dr <o P
0 a -
where the right-hand side is minimized for a = C*/(9 = 2-1C1/ (20 Then
1 ~ ~ evdn + 2
E|GH|s < (1 + ——)CV ) <90/ « X 7=
16T = 1+ 57=) = = —2m+2
The assertion for E[|GT||2 then follows. O

matrix G, the expectation of spectral or Frobenius norm of the scaled matrix SGT" has been proven
to satisfy the following sharp bounds [11, Proposition 10.1]:

The spectral or Frobenius norm of G is also vital for our error analysis. For the real Gaussian

(4.19) EISGT|% = ISIFITIE,  EISGT |2 < ISI2IT e + IS lITl2.

Based on above results, we present the estimates for the norms of quaternion scaled matrix SGT.

LEMMA 4.15. Let G € Q™*™ be given by (4.4), and S € Q™ T € Q™ " be any two fived
quaternion matrices, then

(4.20) E[SGT|[% = 4]S|% ] T]%,
(4.21) E[SGT|2 < 3([ISll2[T]l# + I #Tl2)-

Proof. Note that the distribution of G and Frobenius norm of a matrix are both invariant
under unitary transformations. As a result, without loss of generality, we assume that S, T are
real diagonal matrices whose diagonal entries are exactly their singular values. Write S = 5, T =T,
it follows that

EISGTIH = EY (Isungnitis)? = D lswel*[ts;°Elens|* = 41ISII5| T3,
ki k.

where E|gy;|?> = 4 because the quaternion number gg; follows N(0,4) law.

For the spectral norm, by the real counter part of SGT, we know that ||[SGT|2 = |[YsYcTr|l2
in which Tg has dependent subblocks, and hence it is not a real Gaussian matrix. In order to
apply the result in (4.19) to the quaternion spectral norm estimation, write Tq in terms of its first
block column Ge:

(4.22) Ye = [JoGe J1Ge J2Ge J3Gd,

where G is a real Gaussian matrix, Jy = I4,, and

—eF —el —ei
T T T
e —€ e
(4.23) Ji=| p | @I R=| 3| @I, J=| _§ | @I,
T T 7
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104 and e; is the i-th column of the 4 x 4 identity matrix.
Note that for four arbitrary real matrices My, ..., M3 with the same rows,

3
_ a1 1/2 )
[[Mo My My M|z = ||ZOMzMi " < 2Or£?§x3||Mz||2~

Using this inequality to evaluate the spectral norm of SGT, we obtain

||SGT||2 = ||T5[J0GCT JlGCT JQGCT J3GCTH|2 S 2013]?2(3 ||T5JkGCT||2 = 2||T5GCT||2, I

405 where we have used the facts JI YgJi = Tg and || YsJxGcT |2 = [|[TsGT |2
Therefore by (4.19) and (2.5), we have

EISGT(l2 < 2([|Tsll2Tl7 + I Tsl#IT]l2) = 2[S[l2IT[ 7 + 4[IS]| #[IT][2.

106 By applying above estimates to evaluate E||[SGT|2 = E||T*G*S*||2, we obtain E||SGT|z <
107 2|IS|#|| T2 + 4/|S]|2]|T|| 7. Take the average of the two upper bounds of E[|SGT|s, the asser-

408 tion in (4.21) follows. d
409 4.3. Proofs of Theorems 4.1-4.3. Throughout this subsection, || - ||, denotes either the
410 spectral norm or Frobenius norm.

411 Proof of Theorem 4.1. Let Q be the orthonormal basis for the range of the sample matrix

12 Yo = AQ. Set ; = VIQ for ¢ = 1,2, then by a similar deduction to [11, Theorem 9.1], the
413 following inequality

A (0) 2 * 2 2 12 T 2
e (4.24) (AL — AL = 1 — QQYAL < (12|54 220227 < (llEQHa + ||E29291Ha> ;

415  also holds for the quaternion case, in which V*€2 follows the N (0, 41,,) law. By Lemma 4.5, €21, Q5
416 are disjoint submatrices of V*Q with the k& x (k + p) matrix €; of full row rank with probability
417 one.

By Jensen’s inequality to (4.24), we know that

1/2

EIA® —Alr < (EIA® —a12)"? < (152 + E[5.0.0 |2
[ lr < (ElA, —Al%) < ([Z20% + El22:94(%)

k+p
where by conditioning on the value of €2; and applying (4.20) to the scaled matrix EQQQQ-‘I—,

520201 |7 = E (E[I 90013 | 2:]) = 452319013,

118 which is exactly 4517_%2”22”% according to Theorem 4.10. The assertion in Theorem 4.1 then

119  follows. O

Proof of Theorem 4.2. From (4.24), it is obvious that EHK,(;L*AHQ < HZQ”Q"’E”EQQQQI”Q’I

where by conditioning on the value of ©; and applying (4.21) to the scaled matrix 229291,

B[220z = E (E[I1229201 12101 ) < 36(1Z: o121 » + %20 #19{12)

2 )/ t
< 312 (EIR113)  + 3152 FEN] 1.

120 The estimate for the expectation of the error then follows from Theorems 4.10 and 4.14.
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For the power scheme, let Q be the orthonormal basis for the range of Y,=CQ=(AA*)TAQ :I
Ux2¢+1V*, By Jensen’s inequality and a similar deduction to [11, Theorem 9.2], we know that

~ . -~ 1/(2q+1)
E|ALY, ~ Allz = El| (I ~ QQ)A|2 < (E|[(Zn — QQT)C]2)

i

421 where afqﬂ, ...,020H1 are the singular values of C. The assertion for the power scheme comes
422 true by invoking the result in (4.1). |
423 Remark 4.16. By using the relation ) a?qﬂ < (min(m,n) — k)ai‘fll, the spectral error in

1/(2q+1)
3ev/AkFAp+2 :
hrp—Allz < o [1 +3 4pr+2 + = 2p12p+ \/min(m,n) — k} I
125 The power scheme drives the extra factor in the error to one exponentially fast through increasing

i>k
424 Theorem 4.2 is bounded by E||1/3;(Q)

426 the exponent ¢, and by the time ¢ ~ log(min(m,n)), E||A\,(;Qp — A2 ~ 0p41.

427 The analysis of deviation bounds for approximation errors in Theorem 4.3 relies on the following
428 well-known concentration result [11, Proposition 10.3] for functions of a real Gaussian matrix.

429 LEMMA 4.17 ([11]).  Suppose that h(-) is a Lipschitz function on real matrices: |h(X) —
130 h(Y)| < LI|X = Y||r for all X,Y € R**'. Then for an s X t standard real Gaussian matriz G,
131 P{h(G) > ER(G) + Lu} < e*"/2.

132 Proof of Theorem 4.3. For ¢t > 1, define the parameterized event on which the spectral and
433 Frobenius norms of €; are both controlled:
ev4ak +4p + 2 3k
131 (4.25 E={9: Q< Y—"""" ¢ and |Q|r < .
(425) t { vl < MEETEES  and (9l <4 }

By Theorems 4.11 and 4.14, the probability of the complement of this event satisfies a simple
bound

P(ES) <t~ U+ =4 < op=4p,

435 according to the estimates in (4.15)-(4.18).

436 Set h(X) = || 22X Q| , in which the real counter part of an (n — k) x k quaternion matrix X
137 can be represented on the basis of X, as Tx = [JpX. J1X. JoX. J3X,] for J = [Jy Ji J2 J3], and
1385 Jy € RA=R)X4n=k) hag similar structure to the one in (4.23).

439 Owing to (2.5)-(2.6), h(X) = % T, TxTqi [ r and we could write h(X) as a function of X,

140 with h(X.) := h(X). Notice that h(X.) is a Lipschitz function on real matrices:

h(Xe) = h(Yo) = [1%X0 | — [52YRr| < 520X - V)0l |1#

441 (4.26)
< S22 |2]1121X ~ Yz = [[Z2 )22 2 Xe = Y| .

with a Lipschitz constant L < ||S5|2[|€21]]2. With Jensen’s inequality and Lemma 4.15, we get

1/

- _ 9 2
ER(S2) | @] < (E[((2)" | 1]) " = 2)S2lel|2 |1,

where h(£2;) = h((ﬂg)c), and (2). is a real Gaussian matrix. Applying Lemma 4.17, conditionally
to the random variable h(€23) = || S22, || » gives

Py =P {22201 |Ir > 2|21 r + |22l 9] lau | B} < e/
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In (4.25), consider the upper bounds associated with the event E; and substitute them into the
above inequality, then we can get

e 4k‘+4p+ 2
{||Z2Q2QIF > \/ ||E2HF T [B2lout | Et} <P <e ™/

Using P(Ef) < 2t~ to remove the conditioning, we obtain

3k 1/2 evak +4p+2
P {229,907 > —(202) I A A e

2 < 2t_4p —1/,2/2.
p+1 j dpa (= te

i>k

In terms of (4.24), HA
follows. ~ ~

For the deviation bound of the spectral error, set h(X) = ||£2XQ1||2, and view h(X) as a
function of X, i.e. A(X.) = h(X), then

hip — Allr < [152]lF + | 2292, || 7, the desired probability bound in (4.2)

B(Xe) = A(Ye)| <[22l X = Y[a[|20 ]2 < S22 Q121X = Y]r = [[S2ll2|Q] 12 Xe = Yellr,

from which we know that h(-) is also a Lipschitz function with the Lipschitz constant L <
[|22]]2]/€2}||2. Using the upper bound for the expectation of A(£2):

ER(R) | 1] <3 (IS l219] 17 + 152 l192]2)
and the concentration result in Lemma 4.17, it follows that
_u2
PLI229001 2 > (1521941 + 52l #I19L11) + [Salla [ @ lou | B} < o2,

The bound in (4.3) could be derived from (4.24)-(4.25) with a similar technique. d

COROLLARY 4.18. (Simple deviation bound for the spectral error of power scheme-free algo-
rithm) With the notations in Theorem 4.1, we have the simple upper bound

1/2
/ k 6v/4k +4p + 2 )
(4.27) 1AL, — All2 < (1 +18,/1+ p+1> Oht ]2% :

except with the probability 3e~*P.
Proof. Taking u = 24/2p,t = e in Theorem 4.3 leads to

1/2
A (0) 3 2/2pe” k 3e?/ak+4p+2 2
HAk+p Al < (1 +9 p+1 + 2\/1% 1+ p+1> Ok+1 T 4p+4p J§k0j>
1/2
< (1 O+ VBT ) o+ SR (£2)
J
from which the desired upper bound follows. 0
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Fic. 5.1. Approximation errors and upper bounds for a 100 x 80 matriz whose singular values decay very
slowly (decay rate: 0.9). The left figures are for the estimates of spectral errors, while the right ones correspond to
the Frobenius errors.

5. Numerical examples. In this section, we give five examples to test the features of ran-
domized QSVD algorithms. The following numerical examples are performed via MATLAB with
machine precision u = 2.22e — 16 in a laptop with Intel Core (TM) i5-8250U CPU @ 1.80GHz
and the memory is 8 GB. Algorithms such as quaternion QR, QSVD are coded based on the
structure-preserving scheme.

ExaMPLE 5.1. In this example, we test the rationality of estimated bounds for approximation

errors ||A\l(€q_£p — All;. To this end, we construct an m x n(m > n) quaternion random matrix
Aas A=1 [201} V*, where U,V are quaternion Householder matrices taking the form U =
I, —2uu*,V = I, — 2vv*, u, v are quaternion unit vectors, and ¥; = diag(oy,...,0,) is the real

n X n diagonal matrix. Consider singular values with different decay rate as

(1) o1 =1,0441/0;, =09 fori=1...,n—1or

(2) 01 =1,0411/0; =01 fori=1...,n—1,
where in case (1), the smallest singular value is ogg &~ 2.18-10~%, while in case (2), for the threshold
6 = 107!, the numerical rank of the matrix is 16.

For each case with different values of k,p, we run Algorithm 3.1 with ¢ = 0 for 1000 times,
and plot the histograms for exact values of ||1A&g2p — Al|, with a = 2, F. Below each histogram,
the upper bounds of the errors are listed, where we take p = 4 for all cases, and the bound 7§ for
average errors is estimated via Theorems 4.1 and 4.2, while the bound n¢ for deviation errors is
based on (4.2) and (4.27), respectively, in which u = 24/2p,t = e. For p > 4, the bounds hold with
probability 99.99%.

In Figure 5.1, it is observed that for case (1) with slow decay rate in the singular values, the

upper bounds 7§ and 7¢ are respectively about 15 and 40 times the actual values of ||:&,(co+)p —All2,
(0)

while for the Frobenius error ||.K,€ tp— A||F, the estimated upper bounds 1% and n% are much
tighter, and they are only about 2 and 10 times the actual values, respectively.
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k=6,p=4,9=0 k=6,p=4,0=0
200 200
150 150
100 100
50| 50
0 0
10" 10° 10° 107*° 107 10°
ns = 8.0de — 6, n§=3.55e—5 NG = 1.54e —6, nh=1.97e—5
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Fic. 5.2. Approximation errors and upper bounds for a 100 x 80 matriz whose singular values decay very
fast (decay rate: 0.1) The left figures are for the estimates of spectral errors, while the right ones correspond to
Frobenius errors.

In Figure 5.2 and for case (2) with fast decay rate in the singular values, a relative large
oversampling size p = 4 gives upper bounds that are not sharp enough, and there may be a factor
O(10*) between the estimated upper bounds and actual approximation errors. When we take
p = 1, the estimates for the upper bounds have been greatly enhanced. The reason is that the
tested matrix A has fast decay rate in its singular values, therefore the orthonormal basis of R (A2)
gives a good approximation of an ¢-dimensional (¢ = k + p) left dominant singular subspace of

A, which makes ||1AX,(CO+)p — All2 = O4p+1, and when p = 4, it is much smaller than the estimated
bound 7§ ~ O(ck41)-
Overall, the test results in Figures 5.1-5.2 illustrate the rationality of theoretical estimates for

approximation errors.

ExXaMPLE 5.2. In this example, we test how different values of ¢ in the power scheme affect
the approximation errors ||;&,(€q) — Al|,. We use standard test image lena512' with 512 x 512
pixels. This color image is characterized by a 512 x 512 pure quaternion matrix A with entries
A;; = Rii+ Gyjj + Bijk, where R;;,Gj, B;; represent the red, green and blue pixel values at
the location (i, 7) in the image, respectively. The singular values and adjacent singular value ratio
ok+1/0% of A are depicted in Figure 5.3.

Based on the structure-preserving quaternion Householder QR and QMGS processes for getting
the orthonormal basis matrix Q, we take the oversampling p = 4 and depict the approximation
errors Hgff) —Al|, for k ranging from 5 to 200 with step 5 in Figures 5.4-5.5, where svdQ plots the
optimal rank-k approximation errors obtained via the structure-preserving QSVD algorithm [38].

It is observed that when k > 5, the adjacent singular value ratio is greater than 0.8, the power
scheme with ¢ = 0 gives the worst estimates for the rank-k£ approximation errors among three
cases. In the quaternion Householder QR-based algorithm, the case with ¢ = 2 behaves better

Ylena512: https://www.ece.rice.edu/~wakin/images/
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F1c. 5.3. Singular values and adjacent singular value ratios for color image lenab12.

T
——svdQ

——svdQ

—6— randsvdQ(q=0) —o— randsvdQ(q=0)
—6—randsvdQ(q=1) o —o—randsvdQ(q=1)
—=— randsvdQ(q=2) 0 —=—randsvdQ(g=2)

50 100 150 200 0 50 100 150 200

Fia. 5.4. Errors incurred for different power schemes, in which the orthonormal basis Q in randsvdQ is
obtained via quaternion Householder QR procedure.

2q+1
than that for ¢ = 1, since a smaller adjacent singular value ratio (%) of (AA™)ZA helps

generate better basis matrix Q and rank-k matrix approximation. Although the approximation
errors from randomized algorithms are not as accurate as the svdQ-based ones, they still deliver
acceptable peak signal-to-noise ratio (PNSR) and relative approximate errors as listed in Table 5.1,
in which the PSNR is defined by

—~ 2552
PSNR(A(” A) = 10log,, %
IALY — Al

It is observed that ¢ = 1 is acceptable for the desired accuracy.
In Figure 5.5, QMGS-based method is compared with quaternion Householder QR procedure.
QMGS gives satisfactory approximations for k£ < 160 and ¢ = 1 or 2, while for ¢ = 2 and k& > 160,

2q+1
the estimates become worse. That is partly because for ¢ = 2, ( o ) = l.le + 13 and

J165
Y, = (AA™)7AQ tends to be an ill-conditioned matrix, which leads to a great loss of orthogonality
in the matrix Q during the QMGS procedure. However, the low-rank approximation problem only
captures the dominant SVD triplets, the target rank is usually small, and in the randomized
algorithm we usually deal with the QMGS of a well-conditioned matrix, the QMGS with ¢ = 1 is
preferred, since it is more efficient than the quaternion Householder QR.
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TABLE 5.1
The peak signal-to-noise ratio and relative approximating errors for randsvdQ

1AL Al 1AL —Allr
K q PNSR AT AT
50 1 24.7780 0.0115 0.0602
2 25.0501 0.0106 0.0583
100 1 29.4102 0.0057 0.0353
2 29.7303 0.0051 0.0340
150 1 32.8041 0.0035 0.0239
2 33.1368 0.0032 0.0230
10° :
—e—svdQ
—6— randsvdQ(q=0)
—6— randsvdQ(q=1)
—&— randsvdQ(q=2)
= ?“ 10°F
5 R
“ <
10°F
' 4‘0 8‘0 12‘0 1!;0 200 1020 5‘0 160 1‘50 200

F1c. 5.5. Errors incurred for different power schemes, in which the orthonormal basis Q in randsvdQ is
obtained via quaternion MGS.

EXAMPLE 5.3. In this example, we compare numerical behaviors of randeigQ and prandsvdQ
algorithms in computing the rank-k approximation of a large quaternion Hermitian matrix. It is
well known that the real Laplacian matrix plays important roles in image denoising, inpainting
problems for the grayscale image. Recently in [1], complex Laplacian matrix is also discussed in
the mixed graph with some directed and some undirected edges, and its zero eigenvalue is proved
to be related to the connection of the mixed graph. Our example involves a quaternion graph
Laplacian matrix for a color image, which is modified from real [11] and complex cases.

For this purpose, we begin resizing lena512 to a 60 x 60-pixel color image, owing to the restricted
memory of Laptop. For each pixel i in color channel s € {r,g,b}, form a vector xé” € R by
gathering the 25 intensities of the pixels in a 5 x 5 neighborhood centered at pixel i. Next, we form
a 3600 x 3600 pure quaternion Hermitian weight matrix W = Wyi+ W,j + Wik with wj; = w3,
wi; =0, and w;; = (wr)ij i+ (wg)ijj + (wb)ij k for i < j, which is determined by

(ws)ij = exp {_”xgl) - l’gj)Hg/O'g}, ] > iv s € {T,g,b}.

Here the entries in their strictly upper triangular part of W reflect the similarities between patches,
and the parameter o4 controls the level of sensitivity in each channel. By zeroing out all entries of
skew-symmetric matrices W,, W, and W}, except the four largest ones in magnitude in each row,
we obtain sparse weight matrices 17[//5 and W. Similar to the complex case, let D be a diagonal

matrix with d;; = ) |w;;|, and define the quaternion Laplacian matrix L as
J

L=I—-DY>2WD"1/2,
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Fi1G. 5.6. The cumulative proportion of eigenvalues of a quaternion Laplacian matriz and eigenvalues computed
via randeigQ and prandsvdQ for k = 200, p = 10.

For all s € {r,g,b}, take o, = 50, store the 14400 x 3600 real matrix L., and use structure-
preserving algorithm eigQ [13] to compute all eigenvalues of L. Here the Hermitian matrix L is a
very extreme case with positive eigenvalues, and the smallest ratio o1 /0y of adjacent eigenvalues
(singular values) of L is greater than 0.98.

Take k = 200,p = 10,q = 0,1,2 to compare the eigenvalues of L via randeigQ, prandsvdQ. In
all cases, the approximations of eigenvalues are not good enough, because k£ = 200 only captures
less than 10% proportion of eigenvalues in this extreme case, as revealed in the left figure of Figure
5.6. Due to the quite slow decay rate of eigenvalues, when ¢ is small, say for ¢ = 0, the eigenvalues
computed via randeigQ, prandsvdQ are not accurate enough, but prandsvdQ still approximates
eigenvalues better than randeigQ, as predicted in Remark 3.3. The accuracy is improved as ¢
increases, and for this extreme example, ¢ = 2 is sufficient to guarantee the eigenvalues from two
algorithms with almost the same accuracy. For general cases, we believe that randeigQ is as reliable
as prandsvdQ but more efficient for practical low-rank Hermitian matrix approximation problems
with dominant singular values.

EXAMPLE 5.4. In this example, we consider the color face recognition problem [15] based on
color principal component analysis (CPCA) approach. Suppose that there are s training color
image samples, denoted by m X n pure quaternion matrices Fq,Fo,... Fg, and the average is

S

U =1%F Q" Let X = [vec(F1) — vec(®), -, vec(F,) — vec(¥)], where vec(-) means to
t=1

stack the columns of a matrix into a single long vector. The core work of CPCA approach is to
compute the left singular vectors corresponding to the first k£ largest singular values of X, which
are called the eigenfaces. The eigenfaces can also be obtained from the eigQ algorithm [13] applied
to XX* or XX*.

For color image samples, we use the Georgia Tech face database?, and all images are manually
cropped, and then resized to 120 x 120 pixels. The samples of the cropped images are shown
in Figure 5.7. There are 50 persons to be used. The first ten face images per individual person
are chosen for training and the remaining five face images are used for testing. The number of
chosen eigenfaces, k, increases from 1 to 30. We need to compute & SVD triplets of a 14400 x 500
quaternion matrix X, in which the 14400 rows refer to 120 x 120 pixels and the 500 columns refer
to 50 persons with 10 faces each.

As revealed in [15], the matrix is very large and the svdQ algorithm does not finish the com-
putation of the singular value decomposition of X in 2 hours and eigQ needs about seven times

2The Georgia Tech face database. http://www.anefian.com/research/face_reco.htm
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F1G. 5.8. The color face recognition accuracy and CPU time by lansvdQ, randsvdQ, randeigQ and prandsvdQ
methods with parameters p =4,q = 0.

of the running CPU time via the quaternion Lanczos-based algorithm (lansvdQ)?®. In this exper-
iment we consider the lansvdQ, randsvdQ, prandsvdQ algorithms of X, and randeigQ algorithm of
X*X, where the orthonormal basis is derived based on quaternion MGS process, and in randeigQ),
the matrix X*X is not explicitly formed. The detailed comparisons of recognition accuracy and
running CPU time of candidate methods are depicted in Figure 5.8, in which the accuracy of face
recognition is the percentage of correctly recognized persons for given 250 test images. For p = 4
and ¢ = 0, randomized algorithms have higher recognition accuracy than lansvdQ, and are much
more efficient than lansvdQ. Moreover, the preconditioning technique for randsvdQ can slightly
enhance the efficiency of the algorithm. Unlike lansvdQ, the CPU time for randomized algorithms
does not increase significantly with the target rank (number of eigenfaces). lansvdQ is much less
efficient partly because it uses for-end loop and performs matrix-vector products at each iteration,
while the randomized algorithms make full use of the matrix-matrix products that have been highly
optimized for maximum efficiency on modern serial and parallel architectures [8].

EXAMPLE 5.5. In this example, we generalize the fast frequent directions via subspace embed-
ding (SpFD) method [34] to the quaternion case. The corresponding algorithm is referred to as
SpFDQ, and is compared with prandsvdQ through the color face recognition problem in Example
5.4.

Shttps://hkumath.hku.hk/~mng/mng files/LANQSVDToolbox.zip
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Fic. 5.9. The color face recognition accuracy and CPU time by SpFDQ(,t) and prandsvdQ methods with
parameters p =4,q = 0.

Given a real matrix A € R™*™ (m > n), the SpFD(¥,t) algorithm squeezes the rows of A
by pre-multiplying SP on A, where ¢ is assumed to be a factor of m (if not, append zero rows
to the end of A until m is), P is a random permutation matrix, and S = diag(Sy,...,S) is a

sparse sketching matrix with S; € R*% being generated on a probability distribution. At the

start of the algorithm, it extracts and shrinks the top ¢ important right singular vectors of a two-

layered matrix {g;gﬂ via SVD, and then combines them with the next ¢ rows in SPA to form a

new two-layered matrix. Repeat the procedure until the last ¢ rows of SPA is combined into the
computation. Finally, an orthonormal basis V; € R"*¢ for the row space of SPA is obtained, and
a rank-k approximation of A is derived based on the SVD of AV,. The algorithm consists of (¢ —1)
iterations, and the total cost is

2nnz(A)(£ + 1) + [24nl? + 1606%)(t — 1) + 6mLl? + 2003 + 2mlk + 2mnl, t > 1,

where m > n > ¢ > k, m > £. The choice of t = 2,¢ = k corresponds to an algorithm with the
cheapest cost, while for ¢t = [m/£], SpFD({,t) reduces to a slight modification of FD in [7].

In the SpFDQ(¥, t) algorithm, A is taken to be the 14400 x 500 matrix X in Example 5.4, and
the choice of sketching matrix S is the same as the real case. To perform a fair comparison, we
also consider the preconditioned technique in the QSVD of a short-and-wide or tall-and-narrow
quaternion matrix. During the (¢t — 1) rounds of QSVD in the iteration, due to the potential
singularity of the sketching matrix S; that might lead to a singular two-layered matrix, we apply
quaternion Householder QR first and then implement the QSVD on a small-size matrix. In the
last round of QSVD of AV, the QSVD of AV, is obtained via the QMGS of AV, first and then
applying QSVD to a small upper triangular factor.

The accuracy of face recognition and running CPU time of SpFDQ(¥,¢) and prandsvdQ algo-
rithms are shown in Figure 5.9. The depicted results demonstrate that SpFDQ(k,2) is the most
efficient one among all SpFDQ(4,t) algorithms, while prandsvdQ is a little more efficient than
SpFDQ(k,2) when k increases. For the recognition accuracy, prandsvdQ has higher recognition
accuracy for most parameter values of k, while there also exists a parameter, say for k = 22,
prandsvdQ has lower recognition accuracy than other candidate methods. That is partly because
the sketching matrix S and random €2 are randomly generated on specific distributions, and the
recognition accuracy is sometimes affected by the properties of some specific random matrices.

In order to perform a fair comparison, in Table 5.2 we execute each algorithm 20 times, and
display the average (avrg), maximal (max) and minimal (min) numbers of correctly recognized
persons among 250 test faces for 50 persons, and the average running CPU time (avtime) is also
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given. It is observed that when k is small, say for k& < 9, there exist big fluctuations on the
recognition accuracy of SpFDQ(k,2), and the average numbers of recognized faces increase when
the sketching size in SpFDQ(2k,2) is increased, but SpFDQ(2k,2) still has lower recognition accuracy
than prandsvdQ. When k increases, the difference of face recognition accuracy becomes smaller,
while for the running time, prandsvdQ is the most efficient.

TABLE 5.2
Comparisons of SPFDQ(¢,2) with prandsvdQ for PCA-based color image recognition problems

SpFDQ(%,2)
k 3 6 9 12 15 18 21 24 27 30
avrg 153.25 178.65 184.70 188.05 189.80 189.85 190.00 190.80 190.95 192.40
max 184 188 191 194 195 193 195 195 195 196
min 130 169 176 182 183 185 184 187 187 187
avtime 2.97 3.29 3.68 4.10 4.63 5.47 5.62 6.02 6.86 7.45
SpFDQ(2k,2)
k 3 6 9 12 15 18 21 24 27 30
avrg 161.35 178.75 184.85 190.30 189.25 190.00 188.95 190.60 190.85 191.80
max 172 186 190 194 192 192 192 193 196 196
min 150 172 180 186 186 187 186 188 186 188
avtime 3.18 3.92 4.72 5.60 6.96 7.91 9.27 1047 12.09 13.56
prandsvdQ
k 3 6 9 12 15 18 21 24 27 30
avrg 174.35 187.10 190.55 191.30 190.65 191.15 192.65 193.45 192.25 192.85
max 182 195 201 198 194 198 196 198 197 197
min 164 182 183 185 185 184 187 188 188 189
avtime 3.02 3.30 3.44 3.70 4.11 4.44 4.73 5.02 5.90 5.82

6. Conclusion. In this paper we have presented the randomized QSVD algorithm for quater-
nion low-rank matrix approximation problems. For large scale problems with a small target rank,
the randomized algorithm compresses the size of the input matrix by the quaternion normal
distribution-based random sampling, and approximates dominant SVD triplets with good accu-
racy and high efficiency. The approximation errors of the randomized algorithm are illustrated by
the detailed theoretical analysis and numerical examples. Compared to the Lanczos-based QSVD
(lansvdQ) and fast frequent direction via subspace embedding (SpFDQ) algorithms, the random-
ized algorithms display their effectiveness and efficiency for PCA-based color image recognition
problems.
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