
Multidimensional Total Least Squares Problem with Linear Equality Constraints ∗

Qiaohua Liu† , Zhigang Jia‡ , and Yimin Wei§

Abstract. Many recent data analysis models are mathematically characterized by a multidimensional total least
squares problem with linear equality constraint (TLSE). In this paper, an explicit solution is firstly
derived for the multidimensional TLSE problem, as well as the solvability conditions. With applying the
perturbation theory of invariant subspace, the multidimensional TLSE problem is proved equivalent to a
multidimensional unconstrained weighed total least squares problem in the limit sense. The Kronecker-
product-based formulae are also given for the normwise, mixed and componentwise condition numbers of
the multidimensional TLSE solution of minimum Frobenius norm, and their computable upper bounds
are also provided to reduce the storage and computational cost. All these results are appropriate for
the single right-hand-side case and the multidimensional total least squares problem, which are two
especial cases of the multidimensional TLSE problem. In numerical experiments, the multidimensional
TLSE model is successfully applied to the color image deblurring and denoising for the first time, and
the numerical results also indicate the effectiveness of the condition numbers.
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1. Introduction. The multidimensional total least square (TLS) model, which arises in many
data fitting and estimation problems, finds a “best” fit to the overdetermined system Ax ≈ B,
where A ∈ Rq×n (q > n) and B ∈ Rq×d are contaminated by some noise. It determines
perturbations E to the coefficient matrix A and F to the matrix B measured by the Frobenius
norm such that

(1.1) min
E,F
‖[E F ]‖F , subject to (A+ E)X = B + F.

After the minimizer [Ê F̂ ] is found, a solution X to the consistent corrected system (A+Ê)X =
B + F̂ is called the TLS solution. The TLS model, was originally proposed in 1901 for data
fitting problem [33], but has not caught much attention for a long time. In 1980, Golub and
Van Loan [14] introduced this model into the numerical linear algebra area. Since then, it has
been attracting more and more attention and now the TLS model is applied in a broad class
of scientific disciplines such as system identification [21], image processing [31, 32], speech and
audio processing [17, 22], etc. An overview of applications, theory, and computational methods
of the TLS problem, we refer to [14, 18, 29, 41, 48, 51].
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An extension of TLS model is the following multidimensional TLS problem with equality
constraints (TLSE):

(1.2) min
E,F
‖[E F ]‖F , subject to (A+ E)X = B + F, CX = D,

where the matrix C ∈ Rp×n is of full row rank and the right-hand-side matrix D has d columns.
Within our knowledge, this problem has never been studied in the literature. We will present
the solvability conditions and an explicit solution of (1.2), and define several new condition
numbers to make sensitivity analysis.

The TLSE with a single right-hand side was first presented by Dowling, Degroat and
Linebarger [10] in 1992. A well-known application of the single right-hand-side TLSE is the
linear prediction [35] method for solving the frequency estimation of the signal model

yk =
M∑
i=1

aie
j2πfik + ωk, k = 0, 1, 2, · · · , N − 1, j2 = −1,

where {yk} and {ωk} are the measured samples and additive zero mean white Gaussian noise
samples, respectively, N is the data length, fi and ai are the frequency and amplitude of the
ith sinusoid. A linear prediction equation Ax ≈ b as

y0 y1 · · · yL−1

y1 y2 · · · yL
...

...
. . .

...
yN−L−1 yN−L · · · yN−2




cL
cL−1

...
c1

 ≈


yL
yL+1

...
yN−1

 ,
is solved, where L is the prediction filter order satisfying M ≤ L ≤ N − 2M , and after the
linear prediction vector c is evaluated, the quantity ej2πfi can be determined from the zeros
of the characteristic polynomial zL − c1z

L−1 − . . . − cL−1z − cL = 0. If some frequencies,

say f1, . . . , fp are already known, then it gives the constraint equation [C d]
[
x
−1

]
= 0 with

[1 ej2πfi ej4πfi . . . ej2πfiL] as the i-th (1 ≤ i ≤ p) row of [C d].
Conventional algorithm for single right-hand-side TLSE is on the basis of QR and singular

value decomposition (SVD) matrix factorizations [10]. Further investigations on the TLSE
problem were performed in [26, 37]. In [26], the uniqueness condition of the TLSE solution was
analyzed and proved to be an approximation of an unconstrained weighted TLS problem in the
limit sense. This observation stimulated a QR-based inverse iteration method, which is more
efficient than the iterative algorithm in [37].

As a vital definition in numerical analysis, the condition number measures the worst-case
sensitivity of the solution of a problem to small perturbations in the input data. When C,D
are zero matrices and d = 1, the multidimensional TLSE problem becomes the standard TLS
problem with a single right-hand side, whose first order perturbation analysis and condition
numbers have been widely studied in [1, 6, 8, 9, 13, 19, 23, 28, 47, 49]. By making use of the
perturbation results in [1, 19, 23] and the close relation of the TLSE to an unconstrained weighted
TLS problem, Liu and Jia [25] derived closed formulae for condition numbers of the TLSE
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problem. Further investigations on the perturbation results of TLSE problem with different-
magnitude input data were given in [24], where the results unify the ones for the least squares
problem with equality constraint (LSE) studied by [4, 7, 45]. On the other hand, when C,D are
zero matrices and d > 1, the TLSE problem becomes the multidimensional TLS problem. In
1992, Wei [43, 44] provided perturbation analysis for TLS with more than one solution. Recently,
Zheng, Meng and Wei [30, 50] made further investigations on the condition numbers for the TLS
problem with unique and multiple solutions, respectively.

In this paper, we aim to derive an explicit solution for the multidimensional TLSE problem
and present the general formulae of its condition numbers and their computable upper bounds,
which have not been addressed in the literature. With the invariant subspace perturbation
theorem, we prove that the multidimensional TLSE problem is equivalent to a multidimensional
weighted TLS problem, with a large weight assigned on the constraint; and thereby any direct
and iterative algorithms for standard TLS are feasible for TLSE based on the weighting method.
The multidimensional TLSE model is successfully applied to the color image deblurring and
denoising problem for the first time, and the numerical results indicate the effectiveness of our
method.

Throughout this paper, ‖ · ‖2 denotes the Euclidean vector or matrix norm, In, 0n, 0m×n
denote the n × n identity matrix, n × n zero matrix, and m × n zero matrix, respectively. If
subscripts are ignored, the sizes of identity and zero matrices are clear from the context. For a
matrix M ∈ Rm×n, MT , M †, R(M), σi(M)(σmin(M)) and ‖M‖max denote the transpose, the
Moore-Penrose inverse, the column range space, the i-th largest (the smallest) singular value
and the maximal absolute value of elements of M , respectively. vec(M) is an operator, which
stacks the columns of M one underneath the other. The Kronecker product of A ∈ Rm×n and
B ∈ Rs×t is defined by A⊗B = [aijB] and has the property [16, 20] below:

vec(AXB) = (BT ⊗A)vec(X), (A⊗B)(C ⊗D) = (AC)⊗ (BD),
(A⊗B)T = AT ⊗BT , (A⊗B)† = A† ⊗B†, ‖A⊗B‖2 = ‖A‖2‖B‖2,
vec(AT ) = Π(m,n)vec(A), Π(s,m)(A⊗B) = (B ⊗A)Π(t,n),

where X ∈ Rn×s, C ∈ Rn×k, D ∈ Rt×r and Π(m,n) is an mn×mn vec-permutation matrix.

2. Preliminaries. In this section we first recall some well known results of the multidimen-
sional TLS problem and then derive the solvability conditions and the explicit form for the
multidimensional TLSE solution. We start with a key lemma which will be used in the proofs
of our main results.

Lemma 2.1 ([50]). Let Q =

[
Q11 Q12

Q21 Q22

]
be an n-by-n orthogonal matrix with a 2-by-2

partitioning, then
(a) Q11 has full column (row) rank if and only if Q22 has full row (column) rank;

(b) ‖Q†11‖2 = ‖Q†22‖2, Q†T11 = Q11 −Q12Q
†
22Q21, Q†T11Q

T
21 = −Q12Q

†
22.

2.1. The multidimensional TLS problems. Let L ∈ Rm×n, H ∈ Rm×d (m ≥ n + d), the
multidimensional TLS problem is defined by

(2.1) min
E,F
‖[E F ]‖F , subject to (L+ E)X = H + F.
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Following [14], the multidimensional TLS problem (2.1) may have no solutions. In order to
broad its scope of applications, the generic and nongeneric conditions for TLS solutions were
further studied by Van Huffel and Vandewalle [40, 42], and then refined and generalized by Wei
[44] to make the multidimensional TLS problem (2.1) meaningful in any situation.

SVD is a useful tool to characterize the TLS solution. If the skinny SVD [15, Chapter 2.4]
of [L H] is given by

(2.2) [L H] = UΣV T , Σ = diag(σ1, σ2, · · · , σn+d) ∈ R(n+d)×(n+d),

where σi = σi([L H]) and σ1 ≥ σ2 ≥ · · · ≥ σn+d ≥ 0, U ∈ Rm×(n+d) and V ∈ R(n+d)×(n+d)

have orthonormal columns. For an integer t ∈ [0, n], partition

V =
n
d

[
V11(t) V12(t)
V21(t) V22(t)

]
.

t n+ d− t

For simplicity, we denote Vij = Vij(t) for i, j = 1, 2. If σt > σt+1 and rank(V22) = d hold

simultaneously [44], then a solution to the consistent linear system L̂X = Ĥ is defined as a TLS
solution to the linear approximation equation LX ≈ H, where L̂ = U1Σ1V

T
11 and Ĥ = U1Σ1V

T
21

with U1, V1 being, respectively, the first t columns of U = [U1 U2] and V = [V1 V2], the
diagonal matrices Σ1 = diag(σ1, σ2, · · · , σt) and Σ2 = diag(σt+1, σt+2, · · · , σn+d). Among all
TLS solutions, the solution of minimum Frobenius norm to the compatible system is given by
Xt = −V12V

†
22. By Lemma 2.1(b), it can also be expressed as

(2.3) Xt = −V12V
†

22 = V †T11 V
T

21.

Specially, when Σ2 = σt+1In+d−t, Xt satisfies [L H]T [L H]
[
Xt
−Id

]
= σ2

t+1

[
Xt
−Id

]
, and hence Xt

minimizes the problem min
X

‖H − LX‖2F
d+‖X‖2F

.

Zheng, Meng and Wei [50] defined the mapping φ: Rm(n+d) → Rnd by φ(c) = vec(Xt) for
c = vec([L H]) and provided the first order perturbation analysis of φ(c) as

(2.4)
vec(∆Xt) = φ′(c)vec([∆L ∆H]) +O(‖∆L‖2F + ‖∆H‖2F )

= (H1 +H2)DZvec([∆L ∆H]) +O(‖∆L‖2F + ‖∆H‖2F ),

where

H1 =
(

(V22V
T

22)−1V21 ⊗ (V12FV22)
)
, H2 =

(
V †T22 ⊗ V

†T
11

)
Π(n+d−t,t),

D = (Σ2
1 ⊗ In+d−t − It ⊗ (ΣT

2 Σ2))−1
[
It ⊗ ΣT

2 Σ1 ⊗ In+d−t
]
, Z =

[
V T

1 ⊗ UT2
Π(t,n+d−t)(V

T
2 ⊗ UT1 )

]
,

Π(n+d−t,t) is a vec-permutation matrix, and FV22 = I − V †22V22. From this result, the absolute
normwise condition number was derived for the TLS problem in [50].
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2.2. Solvability conditions and explicit solution of multi-dimensional TLSE problem. For
the multidimensional TLSE problem (1.2), denote Ã = [A B], C̃ = [C D], and assume that the
QR factorization of C̃T takes the form:

(2.5) C̃T = Q̃

[
R̃1

0

]
, Q̃ = [Q̃1 Q̃2],

in which Q̃1 ∈ R(n+d)×p, Q̃2 ∈ R(n+d)×(n+d−p). Let the skinny SVD of ÃQ̃2 be

(2.6) ÃQ̃2 = Ũ Σ̃Ṽ T = [Ũ1 Ũ2]

[
Σ̃1 0

0 Σ̃2

]
[Ṽ1 Ṽ2]T ,

where Ũ ∈ Rq×(n+d−p), Ṽ ∈ R(n+d−p)×(n+d−p), and the matrices Ũ1, Ṽ1 are the submatrices of Ũ
and Ṽ by taking their first k columns, respectively. Here 0 ≤ k ≤ n− p is an integer such that
the singular values of ÃQ̃2 satisfy

(2.7) C(k) : σ̃1 ≥ σ̃2 ≥ . . . ≥ σ̃k > σ̃k+1 ≥ . . . ≥ σ̃n+d−p.

Denote the diagonal matrices Σ̃1 = diag(σ̃1, σ̃2, . . . , σ̃k), Σ̃2 = diag(σ̃k+1, σ̃k+2, . . . , σ̃n+d−p). In
the following theorem, we give the solvability conditions and explicit form of the solution to the
multidimensional TLSE problem.

Theorem 2.2. With the notations in (2.5)–(2.7), let t = p+k and V = Q̃2Ṽ have the partition

(2.8)
V = Q̃2Ṽ = [V 1 V 2] =

n
d

[
V 11 V 12

V 21 V 22

]
.

k n+ d− t k n+ d− t

If for k = n − p, the condition C(k) holds and V 22 is nonsingular, then the unique solution of

the multidimensional TLSE problem (1.2) is determined by Xn = −V 12V
−1
22 , which is also the

solution to the consistent linear system

(2.9) ÂX = B̂, subject to CX = D,

where

(2.10) Â = Ũ1Σ̃1V
T
11, B̂ = Ũ1Σ̃1V

T
21.

Proof. Let X̃ =
[
XT − Id

]T
. Notice that the constraint CX = D requires C̃X̃ = 0,

therefore the column range R(X̃) of X̃ lies in the null space of C̃ spanned by Q̃2. Denoting
X̃ = Q̃2Z and writing Ã = ÃQ̃1Q̃

T
1 + ÃQ̃2Q̃

T
2 , Ẽ = [E F ], (1.2) becomes

(2.11) min ‖[ẼQ̃1 ẼQ̃2]‖F , s.t. (ÃQ̃2 + ẼQ̃2)Z = 0,

where the restriction only imposed on ẼQ̃2 means that we can choose optimal Ẽ∗ such that
Ẽ∗Q̃1 = 0 and ÃQ̃2 + Ẽ∗Q̃2 has a null space with dimension no less than d.
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Note that the condition Ẽ∗Q̃1 = 0 means there exists a matrix Y such that Ẽ∗ = Y Q̃T2 , and
(2.11) becomes

min
rank(ÃQ̃2+Y )≤n−p

‖Y ‖F , s.t. (ÃQ̃2 + Y )Z = 0.

According to (2.6) and the well-known Eckart-Young theorem [15, Theorem 2.4.8] for the best
rank-(n−p) matrix approximation, the optimal Y∗ satisfies Y∗ = −Ũ2Σ̃2Ṽ

T
2 , and for the optimal

error matrix Ẽ∗ = Y∗Q̃2, the corrected system becomes

(ÃQ̃2 − Ũ2Σ̃2Ṽ
T

2 )Z = 0, or Ũ1Σ̃1(Q̃2Ṽ1)T X̃ = 0.

Recalling that R(X̃) ⊆ R(Q̃2), R(X̃) lies in the range of V 2 = Q̃2Ṽ2, i.e., there exists a d × d
matrix G such that

(2.12)

[
X

−Id

]
=

[
V 12

V 22

]
G,

from which we obtain G = −V −1
22 and the unique solution is given by Xn = −V 12V

−1
22 .

Remark 2.3. If for k = n − p, V 22 is singular, then Xn is not well defined. In this circum-
stance, we can always seek an integer 0 ≤ k ≤ n− p such that

(2.13) C(k) holds and V 22 has full row-rank,

say for k = 0, notice that the matrix

[
Q̃1 Q̃2Ṽ

]
=

[
Q̃11 V 1:

Q̃21 V 2:

]
n
d

is an orthogonal matrix, where Q̃11 has full column-rank, since by (2.5), CT = Q̃11R̃1 is a full
column-rank matrix. In view of Lemma 2.1(a), V 2: has full row-rank and a TLSE solution for
the linear system (2.9)-(2.10) can be defined to make the TLSE problem meaningful in any
situation. Likewise, (2.12) still holds where G ∈ R(n+d−t)×d satisfies V 22G = −Id. It follows

that G = −V †22 + PK for an arbitrary (n + d − t) × d matrix K and P = In+d−t − V
†
22V 22.

Therefore any TLSE solution X has the form

X = −V 12V
†
22 + V 12PK,

in which (
V 12V

†
22

)T
V 12P = V

†T
22V

T
12V 12P = V

†T
22 (I − V T

22V 22)P = 0,

and Xt = −V 12V
†
22 is the minimum Frobenius norm solution among all TLSE solutions.

The explicit form of the solution Xt includes the one for the special case d = 1, where
the TLSE problem is described by Ax ≈ b subject to Cx = d. By setting xC = C†d and



MULTIDIMENSIONAL TLS WITH LINEAR EQUALITY CONSTRAINTS 7

rC = AxC −b, in [26] Liu et al. proved that if the orthonormal basis of null space of C̃ is chosen
as

(2.14) Q̃2 =

[
Q2 β−1xC
0 −β−1

]
, β =

(
1 + ‖xC‖22

)1/2
,

in which Q2 is the orthonormal basis of the null space of C, then under the condition

(2.15) σn−p(AQ2) > σn−p+1([AQ2 β−1rC ]) = σn−p+1(ÃQ̃2) = σ̃n−p+1,

the TLSE solution xn is unique and takes another closed-form

(2.16) xn = xC −KAT rC , for K = Q2(QT2 A
TAQ2 − σ̃2

n−p+1In−p)
−1QT2 .

3. Close relation of TLSE to an unconstrained weighted TLS problem. In this section,
we aim to interpret the solution of the multidimensional TLSE problem as an approximation of
the solution to a multidimensional weighted TLS (WTLS) problem, by assigning a large weight
on the constraint.

Firstly, we need to generalize Stewart’s result [38] about the asymptotic behavior for the
scaled SVD of Xε = [X1 εX2], based on the following perturbation theorem for invariant
subspaces.

Lemma 3.1 (Chapter V, Theorem 2.7 in [39]). Let [Z1 Y2] ∈ Rn×n be an orthogonal matrix
and R(Z1) is a k-dimensional simple invariant subspace of n× n matrix C such that

[Z1 Y2]TC[Z1 Y2] =

[
L1 H
0 L2

]
,

where L1 and L2 have no common eigenvalues, and Y T
2 CZ1 = 0. (Here R(Z1),R(Y2) are called

the simple right and left invariant subspace of C, respectively). Given a perturbation E, let

[Z1 Y2]TE[Z1 Y2] =

[
E11 E12

E21 E22

]
.

Then for sufficiently small perturbation ‖E‖2, there exists a unique matrix P such that the
columns of

(3.1) Z̃1 = (Z1 + Y2P )(I + P TP )−
1
2 , Ỹ2 = (Y2 − Z1P

T )(I + PP T )−
1
2

form orthonormal bases for simple right and left invariant subspaces of C̃ = C + E. The
representations of C̃ with respect to Z̃1, Ỹ2 are given by C̃Z̃1 = Z̃1L̃1, C̃Ỹ2 = Ỹ2L̃2 for

(3.2)
L̃1 = (I + P TP )

1
2 [L1 + E11 + (H + E12)P ](I + P TP )−

1
2 ,

L̃2 = (I + PP T )−
1
2 [L2 + E22 − P (H + E12)](I + PP T )

1
2 .

With Lemma 3.1, the asymptotic results for the scaled SVD of Xε are given as follows.
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Lemma 3.2. Let ε > 0 be a small parameter, X = [X1 X2] ∈ Rm×n with X1 ∈ Rm×k being

of full column-rank. Denote Xε = [X1 εX2], X2 = X2 −X1B with B = X†1X2. Let the skinny

SVD of X1 be X1 = U1S1V
T

1 , and X2 = U2S2V
T
2 , Xε = UεSεV

T
ε are SVDs of X2 and Xε,

respectively, then

Sε = diag(S1 +O(ε2), εS2 +O(ε3)),

Uε =
[
U1 +O(ε2) U2 +O(ε2)

]
, Vε =

[
V1 +O(ε2) −εBV 2 +O(ε3)

εBTV1 +O(ε3) V 2 +O(ε2)

]
.

Proof. Let G = [X1 0m×(n−k)]
T [X1 0m×(n−k)] and let

Gε = XT
ε Xε = G+

[
0 εXT

1 X2

εXT
2 X1 ε2XT

2 X2

]
=: G+ E

be the perturbed version of G. Notice that

[Z1 Y2] =
k

n− k

[
V1 0

0 V 2

]
k n− k

has orthonormal columns forming orthonormal basis of simple invariant subspace of G such that
the representations of G with respect to Z1, Y2 are

(3.3) GZ1 = Z1L1, GY2 = Y2L2, for L1 = ST1 S1, L2 = 0n−k.

By Lemma 3.1, there exists an (n − k) × k matrix P such that Z̃1, Ỹ2 with structure (3.1)
form the orthonormal bases of right and left invariant subspaces of Gε, respectively. Substituting
(3.1) into the relation Ỹ T

2 GεZ̃1 = 0, one can derive that (Y2 − Z1P
T )T (G+ E)(Z1 + Y2P ) = 0.

Using (3.3) and the expressions for Z1, Y2, we obtain

P (ST1 S1) = Y T
2 EZ1 − PZT1 EZ1 + Y T

2 EY2P − PZT1 EY2P,

from which

P = εV
T
2 (X†1X2)TV1 +O(ε3).

From (3.1)-(3.2), [Z̃1 Ỹ2] has the following form

[Z̃1 Ỹ2] =

[
V1 +O(ε2) −εBV 2 +O(ε3)

εBTV1 +O(ε3) V 2 +O(ε2)

]
,

and the representations of Gε with respect to Z̃1, Ỹ2 are given by L̃1 = ST1 S1 +O(ε2) and

L̃2 = (Y T
2 EY2 − PZT1 EY2)(1 +O(ε2))

= ε2V
T
2 [XT

2 X2 − (X†1X2)T (XT
1 X2)]V 2 +O(ε4)

= ε2V
T
2 X

T
2 X2V 2 +O(ε4) = ε2S

T
2 S2 +O(ε4).
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Note that Gε = XT
ε Xε is symmetric and Gε has Z̃1 and Ỹ2 as the bases of its simple right and

left invariant subspaces such that Ỹ T
2 GεZ̃1 = 0. Therefore H̃ := [Z̃1 Ỹ2] satisfies

H̃TXT
ε XεH̃ =

[
ST1 S1 +O(ε2) 0

0 ε2S
T
2 S2 +O(ε4)

]
,

where the orthonormal columns of H̃ span the right singular subspace of Xε, with diagonal
entries of S1 +O(ε2), εS2 +O(ε3) as its singular values. By taking Vε = H̃ and using the relation

XεVε = [X1V1 +O(ε2) εX2V 2 +O(ε3)] = [U1S1 +O(ε2) εU2S2 +O(ε3)],

we conclude that the left singular matrix Uε of Xε satisfies

Uε =
[
U1 +O(ε2) U2 +O(ε2)

]
.

The proof is then completed.
Based on Lemma 3.2, the close relation of the multidimensional TLSE problem to an un-

constrained WTLS problem is illustrated below.
Theorem 3.3. For the multidimensional TLSE problem (1.2) with the notations in (2.5)–

(2.8), assume that V 22 has full row rank, and the minimum Frobenius norm solution Xt =

−V 12V
†
22. Denote

(3.4) Lε = W−1
ε L =

[
ε−1C
A

]
, Hε = W−1

ε H =

[
ε−1D
B

]
,

where Wε = diag(εIp, Iq) with ε being a small positive parameter. Let the multidimensional
weighted TLS problem be given by

(3.5) min
Ē,f̄
‖[ Ē F̄ ]‖F , subject to (Lε + Ē)Xε = Hε + F̄ ,

then for sufficiently small ε > 0, the minimum Frobenius norm solution Xt(ε) exists and tends
to Xt as ε tends to zero.

Proof. To prove the close relation of TLSE solution to the WTLS solution, we need to
investigate the right singular vectors of L̃ε = [Lε Hε] corresponding to small singular values.
Notice that L̃Tε and [C̃T εÃT ] have the same left singular vectors, while their singular values
are identical up to multiplication by ε−1.

To apply Lemma 3.2, let C̃T = VCSCU
T
C be the skinny SVD of the full column-rank matrix

C̃T , and the SVD of ÃQ̃2 be given by (2.6). It is obvious that (In+d− C̃T C̃†T )ÃT has the SVD:

(In+d − C̃T C̃†T )ÃT = Q̃2Q̃
T
2 Ã

T = (Q̃2Ṽ )Σ̃T ŨT = V Σ̃T ŨT .

By Lemma 3.2, we know that the left and right singular matrices Ṽε, Ũε of [C̃T εÃT ] satisfies

(3.6)
Ṽε =

[
VC +O(ε2)︸ ︷︷ ︸ V +O(ε2)︸ ︷︷ ︸

]
, Ũε =

[
Pε

(
UC +O(ε2)︸ ︷︷ ︸

)
Qε

(
Ũ +O(ε2)

)
︸ ︷︷ ︸

]
,

p n+ d− p p n+ d− p
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where V = Q̃2Ṽ2,

(3.7) Pε =

[
Ip

ε(ÃC̃†)

]
, Qε =

[
−ε(ÃC̃†)T

Iq

]
,

and the corresponding singular values are just diagonal entries of SC + O(ε2), εΣ̃ + O(ε3).
Therefore the SVD of L̃ε is given by L̃ε = ŨεS̃εṼ

T
ε with

(3.8) S̃ε = diag(ε−1SC +O(ε), Σ̃ +O(ε2)),

and for sufficently small ε, the smallest n+ d− p singular values of L̃ε can be approximated by
σ̃i +O(ε2) for i = 1, . . . , n+ d− p, with a gap between σ̃2

k +O(ε2) and σ̃2
k+1 +O(ε2). Moreover,

the bottom right d × (n + d − t) submatrix in Ṽε has full row rank. Therefore the minimum
Frobenius norm WTLS solution Xt(ε) to problem (3.5) exists, and in the limit, it takes the form

lim
ε→0+

Xt(ε) = lim
ε→0+

[
− (V 12 +O(ε2))(V 22 +O(ε2))†

]
= −V 12V

†
22,

which is exactly Xt. This leads to the desired results.
Remark 3.4. The weighting method of treating TLSE as the WTLS problem (3.4)-(3.5) al-

lows the application of any numerical algorithms for standard TLS model to the WTLS problem,
say for a TLSE model arising in color image deblurring and denoising problem (See Example
5.1), we may use the randomized truncated TLS (RTTLS) algorithm [48, Section 3.2.1] on L̃ε
to approximate well its large singular values and corresponding singular vectors, from which

the RTTLS solution Xrttls is approximated by Xt(ε) =
(
Ṽ T

11(ε)

)†
Ṽ T

21(ε) according to the formula

(2.3). The idea of computing Xrttls is to treat n+ d− t small singular values of L̃ε as identical
[48], and the parameter t = k + p plays the role of the regularization parameter to guarantee a
well-conditioned Ṽ11(ε). A feasible t∗ can be chosen based on the L-shaped curve for

(3.9) (t, log10 yt) , with yt =
‖Hε − LεXt(ε)‖2F
d+ ‖Xt(ε)‖2F

.

Here the quantity yt approximates small singular values of L̃ε and the choice t is to avoid small
singular value gaps that might lead to a (nearly) singular Ṽ11(ε) (see [41, Theorem 3.14]).

4. Condition numbers of the multidimensional TLSE problem. Condition numbers mea-
sure the sensitivity of the solution to the original data in problems, and they play an important
role in numerical analysis. In this section, we evaluate the condition number of the multidimen-
sional TLSE problem.

Let m = p + q. Define the mapping φ : Rm(n+d) → Rnd for the multidimensional TLSE
problem (1.2):

φ(c) = vec(Xt), c = vec([L H]), for L =

[
C
A

]
, H =

[
D
B

]
,
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and the absolute normwise, relative normwise, mixed and componentwise condition numbers of
Xt as follows

κabs(Xt, L,H) = lim
ε→0

sup

{
‖∆Xt‖F

‖[∆L ∆H]‖F
: ‖[∆L ∆H]‖F ≤ ε‖[L H]‖F

}
,

κrel(Xt, L,H) = lim
ε→0

sup

{
‖∆Xt‖F
ε‖Xt‖F

: ‖[∆L ∆H]‖F ≤ ε‖[L H]‖F
}
,

m(Xt, L,H) = lim
ε→0

sup

{
‖∆Xt‖max

ε‖Xt‖max
: |∆L| ≤ ε|L|, |∆H| ≤ ε|H|

}
,

c(Xt, L,H) = lim
ε→0

sup
{

1
ε

∥∥∥∆Xt
Xt

∥∥∥
max

: |∆L| ≤ ε|L|, |∆H| ≤ ε|H|
}
,

where | · | denotes the componentwise absolute value, Y ≤ Z means yij ≤ zij for all i, j, and Y
Z

is the entry-wise division defined by Y
Z := [

yij
zij

] and ξ
0 is interpreted as zero if ξ = 0 and infinity

otherwise.
If vec(Xt) = φ(c) is continuous and Fréchet differentiable at the neighbourhood of the point

c, according to the concept and formulae in [5, 11, 12, 36], the above condition numbers can be
formulated as follows:

κabs(Xt, L,H) = ‖φ′(c)‖2, κrel(Xt, L,H) =
‖φ′(c)‖2‖c‖2
‖φ(c)‖2

,

m(Xt, L,H) =
‖|φ′(c)| · |c|‖∞
‖φ(c)‖∞

, c(Xt, L,H) =

∥∥∥∥ |φ′(c)| · |c||φ(c)|

∥∥∥∥
∞
.

4.1. Normwise condition number. Notice that φ′(c) is vital for above condition numbers,
while a simple and Fréchet differentiable expression of φ(c) is not easy to derive. To get φ′(c),
as did in [25], we start from the differentiability of the weighted TLS solution Xt(ε) by defining
the mapping for the multidimensional WTLS problem (3.4)-(3.5): vec(Xt(ε)) = ϕ(cε) for cε =
vec([Lε Hε]). Then we get the first order perturbation estimate vec(∆Xt(ε)) of WTLS solution
based on the result in (2.4), from which the first order perturbation estimate of the TLSE
solution is derived by taking the limit ε → 0. Similar limit technique to perform perturbation
and condition number analysis of a problem was also used in [27, 34, 46] for equality constrained
least squares problem, and in [52] for mixed least squares-total least squares problem.

Theorem 4.1. With the notations in (2.5)-(2.6), let the skinny SVD of C̃ be C̃ = UCSCV
T
C .

Assume that the condition (2.7) holds and the partition V 22 in (2.8) is of full row rank. Denote

P =

[
Ip

0q×p

]
, Q =

[
−(ÃC̃†)T

Iq

]
, S1 =

[
SC 0

0 Σ̃1

]
, V̂1 = [VC V 1] =

n
d

[
V̂11

V̂21

]
.

p k t

Then for sufficiently small perturbation ‖[∆L ∆H]‖F , the first order perturbation estimate for

the minimum Frobenius norm TLSE solution Xt = −V 12V
†
22 takes the form

(4.1) vec(∆Xt) = Kvec([∆L ∆H]) +O(‖[∆L ∆H]‖2F ),
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where K = (H1 +H2)GẐ is exactly the Fréchet derivative φ′(c) and with FV 22
= I − V †22V 22,

(4.2)

H1 =
(

(V 22V
T
22)−1V̂21

)
⊗ (V 12FV 22

), H2 =
(
V
†T
22 ⊗ V̂

†T
11

)
Π(n+d−t,t),

G = (S2
1 ⊗ In+d−t −

[
0p 0
0 Ik

]
⊗ (Σ̃T

2 Σ̃2))−1
[
It ⊗ Σ̃T

2 S1 ⊗ In+d−t
]
,

Ẑ =

[
[0(n+d)×p V 1]T ⊗ (QŨ2)T

Π(t,n+d−t)

(
V
T
2 ⊗ [PUC QŨ1]T

) ] .
Proof. Assume that the SVD of L̃ε = [Lε Hε] = ŨεS̃εṼ

T
ε is given by (3.6)–(3.8), whose

factors have partitions as

(4.3)

Ũε =
[
Ũ1(ε) | Ũ2(ε)

]
=
[
PεUC QεŨ1

∣∣∣ QεŨ2

]
+O(ε2),

t n+ d− t p k n+ d− t

Ṽε =
n
d

[
Ṽ11(ε) Ṽ12(ε)

Ṽ21(ε) Ṽ22(ε)

]
=

[
VC V 1︸ ︷︷ ︸ ∣∣∣ V 2

]
+O(ε2),

t n+ d− t t n+ d− t
S̃1(ε) = diag(ε−1SC +O(ε), Σ̃1 +O(ε2)), S̃2(ε) = Σ̃2 +O(ε2).

By applying the result in (2.4) for the WTLS problem (3.4)–(3.5), the first order perturbation
estimate of the WTLS solution Xt(ε) satisfies

(4.4) vec(∆Xt(ε)) = (H1(ε) +H2(ε))DεZεvec([∆Lε ∆Hε]) +O(‖∆Lε‖2F + ‖∆Hε‖2F ),

where with F
Ṽ22(ε)

= I − Ṽ †22(ε)Ṽ22(ε),

(4.5)

H1(ε) =
(

(Ṽ22(ε)Ṽ
T

22(ε))
−1Ṽ21(ε)

)
⊗ (Ṽ12(ε)FṼ22(ε)

), H2(ε) =
(
Ṽ †

T

22(ε) ⊗ Ṽ
†T

11(ε)

)
Π(n+d−t,t),

Dε = (S̃2
1(ε) ⊗ In+d−t − It ⊗ (S̃T2(ε)S̃2(ε)))

−1
[
It ⊗ S̃T2(ε) S̃1(ε) ⊗ In+d−t

]
,

Zε =

[
Ṽ T

1(ε) ⊗ Ũ
T
2(ε)

Π(t,n+d−t)(Ṽ
T

2(ε) ⊗ Ũ
T
1(ε))

]
.

In (4.4), DεZεvec([∆Lε ∆Hε]) = DεZε(In+d ⊗ W−1
ε )vec([∆L ∆H]). By setting Ŵε =

diag(εIp, Ik), Ŝ1(ε) = ŴεS̃1(ε), we obtain DεZε(In+d ⊗W−1
ε ) = GεẐε for

(4.6)

Dε = (Ŝ 2
1(ε) ⊗ In+d−t − Ŵ 2

ε ⊗ (S̃T2(ε)S̃2(ε)))
−1
[
Ŵ 2
ε ⊗ S̃T2(ε) (ŴεŜ1(ε))⊗ In+d−t

]
,

Gε = (Ŝ 2
1(ε) ⊗ In+d−t − Ŵ 2

ε ⊗ (S̃T2(ε)S̃2(ε)))
−1
[
It ⊗ ŜT2(ε) Ŝ1(ε) ⊗ In+d−t

]
,

Ẑε =

 (Ṽ1(ε)Ŵ
2
ε )T ⊗ (ŨT2(ε)W

−1
ε )

Π(t,n+d−t)

(
Ṽ T

2(ε) ⊗ (W−1
ε Ũ1(ε)Ŵε)

T
)  .

By the expressions in (4.3) and taking the limit ε→ 0 for H1(ε), H2(ε), Gε and Ẑε in (4.5)–(4.6),

we obtain the corresponding limit matrices H1, H2, G, Ẑ as (4.2), and that K = (H1 + H2)GẐ
is exactly the Fréchet derivative φ′(c).
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Theorem 4.2. With the notations in Theorem 4.1 , the absolute and relative condition num-
bers of the minimum Frobenius norm TLSE solution Xt are given by

κabs(Xt, L,H) = ‖(H1 +H2)GZ‖2, κrel(Xt, L,H) = ‖(H1 +H2)GZ‖2
‖[L H]‖F
‖Xt‖F

,

where

H1 =
(
(V 22V

T
22)−1V̂21

)
⊗ (V 12 +XtV 22), H2 =

(
V
†T
22 ⊗ (V̂11 +XtV̂21)

)
Π(n+d−t,t),

Z = diag
( [

0p 0
0 Ik

]
⊗ (ŨT2 QT ) ,

[
Ip 0

−ŨT1 (ÃC̃†)UC Ik

]
⊗ In+d−t

)
.

In particular, when k = n− p, H1 diminishes to zero and H2 =
(
V
−T
22 ⊗ V̂ −T11

)
Π(d,n) for V̂ −T11 =

V̂11 +XnV̂21.
Proof. By the condition number formulae, the absolute and relative condition numbers of

the solution Xt are given by

κabs(Xt, L,H) = ‖φ′(c)‖2 = ‖K‖2, κrel(Xt, L,H) =
‖φ′(c)‖2‖c‖2
‖Xt‖F

=
‖K‖2‖[L H]‖F

‖Xt‖F
,

in which ‖K‖2 = ‖KKT ‖1/22 = ‖(H1 +H2)GẐẐTGT (H1 +H2)‖1/2 for

ẐẐT =


[

0p 0
0 Ik

]
⊗ (ŨT2 QTQŨ2) 0

0 Π(t,n+d−t)

(
In+d−t ⊗M

)
ΠT

(t,n+d−t)

 = Z̆Z̆T ,

and

M =

[
Ip UTCP

TQŨ1

ŨT1 QTPUC ŨT1 QTQŨ1

]
=

[
Ip 0

−ŨT1 (ÃC̃†)UC Ik

] [
Ip 0

−ŨT1 (ÃC̃†)UC Ik

]T
,

Z̆ = diag
( [

0p 0
0 Ik

]
⊗ (ŨT2 QT ) , Π(t,n+d−t)

(
In+d−t ⊗

[
Ip 0

−ŨT1 (ÃC̃†)UC Ik

]) )
= diag

( [
0p 0
0 Ik

]
⊗ (ŨT2 QT ) ,

([ Ip 0

−ŨT1 (ÃC̃†)UC Ik

]
⊗ In+d−t

)
Π(t,n+d−t)

)
.

Notice that Π(t,n+d−t) is an orthogonal matrix, then ‖K‖2 = ‖(H1 + H2)GZ̆‖2 = ‖(H1 +

H2)GZ‖2.
The expression for H1 is obvious since Xt = −V 12V

†
22. For H2, note that the SVDs of

ÃQ̃2Q̃
T
2 = Ũ Σ̃V

T
and C̃ = UCSCV

T
C imply R(VC) = R(C̃T ) = R(Q̃1) and R(V ) ⊆ R(Q̃2),

therefore V T
C V = 0 and

(4.7) V̆ := [VC V ] =

[
V̂11 V 12

V̂21 V 22

]
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is an (n+ d)× (n+ d) orthogonal matrix. According to Lemma 2.1(b),

(4.8) V̂ †
T

11 = V̂11 +XtV̂21.

The formula for H2 is as desired. Moreover when k = n− p, V 22 is nonsingular and so is V̂11 by

Lemma 2.1(a). Obviously, Xn = −V 12V
−1
22 , and H1 = 0.

The simplified form of ‖K‖2 still involves Kronecker product operations, which might lead
to large storage cost. The following theorem gives compact upper bounds for the normwise
condition number.

Theorem 4.3. Let

ρ
(1)
AC = 1 + ‖C̃‖2 + ‖ÃC̃†C̃‖2, ρ

(2)
AC = 1 + ‖C̃†‖2 + ‖ÃC̃†‖2, ησk = max

1,

√
σ̃2
k + σ̃2

k+1

σ̃2
k − σ̃2

k+1

 ,

then for the absolute normwise condition number, we have

κabs(Xt, L,H) ≤ (1 + ‖Xt‖22)ρ
(2)
ACη

σ
k .

In particular, when k = n− p, it has the bounds as

ησk
‖V̂11‖2‖V 22‖2ρ(1)

AC

≤ κabs(Xn, L,H) ≤ (1 + ‖Xn‖22)ρ
(2)
ACη

σ
k .

Proof. Let W0 =

[
0p 0
0 Ik

]
. It follows that Z = ΓZ̈ for Γ = diag(Γ1,Γ2) ⊗ In+d−t, with

Γ1 = W0,Γ2 = diag(SC , Ik), and

Z̈ = diag
(

W0 ⊗ (ŨT2 QT ) ,

[
S−1
C 0

−ŨT1 (ÃC̃†)UC Ik

]
⊗ In+d−t

)
=: diag(Z̈11, Z̈22).

Therefore

(4.9) κabs(Xt, L,H) ≤ ‖H1 +H2‖2‖G‖2‖Z̈‖2,

where G = GΓ, and

GG
T

=

([
S4
C 0

0 Σ̃T
1 Σ̃1

]
⊗ In+d−t +W0 ⊗ (Σ̃T

2 Σ̃2)

)(
S2

1 ⊗ In+d−t −W0 ⊗ (Σ̃T
2 Σ̃2)

)−2

consists of (k + 1) diagonal blocks D(i) for i = 0, 1, · · · , k satisfying

D(0) = Ip(n+d−t), D(i) = diag
( σ̃2

i + σ̃2
k+j

(σ̃2
i − σ̃2

k+j)
2

)
, 1 ≤ i ≤ k, 1 ≤ j ≤ n+ d− t.

Note that σ2+η2

(σ2−η2)2
is an increasing function of η and a decreasing function of σ for σ > η > 0,

therefore

(4.10) ‖G‖2 = ‖GGT ‖1/22 = ησk .
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For the upper bound of ‖H1 + H2‖2, note that V̆ in (4.7) is an orthogonal matrix and

Xt = −V 12V
†
22. Then by a similar technique in [50, Theorem 3.6], we have

(4.11) ‖H1 +H2‖2 ≤ ‖V
†
22‖22 = 1 + ‖Xt‖22.

For the norm of Z̈ and Z̈†, note that
(4.12)

‖Z̈11‖2 ≤ ‖Q‖2 = 1 + ‖ÃC̃†‖2, ‖Z̈†11‖2 = (σmin(QŨ2))−1 = (σmin(I + ŨT2 Ĉ
T ĈŨ2))−1/2 ≤ 1

for Ĉ = (ÃC̃†)T . Moreover, with (ÃC̃†)UCSC = ÃVC and VCV
T
C = C̃†C̃,

‖Z̈22‖2 =

∥∥∥∥[ S−1
C 0

−ŨT1 (ÃC̃†)UC Ik

]∥∥∥∥
2

≤ 1 + ‖C̃†‖2 + ‖ÃC̃†‖2 = ρ
(2)
AC ,

‖Z̈−1
22 ‖2 =

∥∥∥∥[ SCV
T
C 0

ŨT1 ÃVCV
T
C Ik

]∥∥∥∥
2

≤ 1 + ‖C̃‖2 + ‖ÃC̃†C̃‖2 = ρ
(1)
AC .

Therefore ‖Z̈‖2 ≤ ρ
(2)
AC , ‖Z̈†‖2 ≤ ρ

(1)
AC . Combining this with (4.10)–(4.12), the upper bound for

κabs(Xt, L,H) follows.
When k = n− p, H1 = 0 and κabs(Xn, L,H) has the lower bound as

κabs(Xn, L,H) ≥ σmin(H2)‖GZ̈‖2 ≥ σmin(H2)σmin(Z̈)‖G‖2
=

ησk
‖H−1

2 ‖2‖Z̈
†‖2
≥ ησk
‖V̂11‖2‖V 22‖2ρ(1)

AC

,

which completes the proof.
Remark 4.4. When C̃ = 0 and ησk > 1, the upper and lower bounds in Theorem 4.3 re-

duce to the ones for the TLS problem in [50]. Moreover, note that ‖V †22‖22 = 1 + ‖Xt‖22 =
1/σ2

min(V 22), and it follows from Theorem 4.3 that the multidimensional TLSE problem might

be ill-conditioned, when C̃ is ill conditioned, or the gap between σ̃k and σ̃k+1 or σmin(V 22) is
small or the solution norm ‖Xt‖2 is large.

4.2. Mixed and componentwise condition numbers. For the mixed and componentwise
condition numbers, we have the following results.

Theorem 4.5. With the notations in Theorem 4.1, we have mixed and componentwise condi-
tion formulae of Xt as follows:

(4.13) m(Xt, L,H) =
‖|MN |vec([|L| |H|])‖∞

‖Xt‖max
, c(Xt, L,H) =

∥∥∥∥ |MN |vec([|L| |H|])
vec(|Xt|)

∥∥∥∥
∞
,

where M = (H1 +H2)D−1, N = N1 +N2 for

D = S2
1 ⊗ In+d−t −

[
0p 0
0 Ik

]
⊗ (Σ̃T

2 Σ̃2),

N1 = [0(n+d)×p V 1]T ⊗ (QŨ2Σ̃2)T , N2 = Π(t,n+d−t)

(
V
T
2 ⊗ [PUCSC QŨ1Σ̃1]T

)
.
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Moreover, if the (n+ d− t)× t matrix Y satisfies Dvec(Y ) = vec(Υ) for

(4.14) Υ = |QŨ2Σ̃2|T [|L| |H|][0(n+d)×p |V 1|] + |V T
2 |[|L| |H|]T |[PUCSC QŨ1Σ̃1]|,

then the condition numbers have compact upper bounds as

mu(Xt, L,H) =

∥∥∥|V̂ †T11 |Y
T |V †22|+ |V 12FV 22

|Y |V̂ T
21(V 22V

T
22)−1|

∥∥∥
max

‖Xt‖max
,

cu(Xt, L,H) =

∥∥∥∥∥ |V̂
†T

11 |Y
T |V †22|+ |V 12FV 22

|Y |V̂ T
21(V 22V

T
22)−1|

Xt

∥∥∥∥∥
max

,

where the matrix Y can be formulated via its i-th column yi = Y ei:

(4.15) yi = (s2
i In+d−t − τiΣ̃T

2 Σ̃2)−1Υei, i = 1, 2, · · · , t.

with si being the i-th diagonal element of S1 and τi = 1 for i > p and zero otherwise.
Proof. By Theorem 4.1 and the concept of condition numbers, the mixed condition number

of Xt can be formulated

m(Xt, L,H) =
‖|φ′(c)| · |c|‖∞
‖φ(c)‖∞

=

∥∥∥|(H1 +H2)GẐ| · vec([|L| |H|])
∥∥∥
∞

‖Xt‖max

=

∥∥∥∣∣∣M(N1 + Π(t,n+d−t)(In+d−t ⊗ S1)
(
V
T
2 ⊗ [PUC QŨ1]T

)∣∣∣ )vec([|L| |H|])
∥∥∥
∞

‖Xt‖max

=
‖|MN |vec([|L| |H|])‖∞

‖Xt‖max
,

where the numerator is bounded by

|MN |vec([|L| |H|]) ≤ (|H1|+ |H2|)D−1(|N1|+ |N2|)vec([|L| |H|])
≤ (|H1|+ |H2|)D−1vec(Υ) ≤ vec

(
|V̂ †T11 |Y T |V †22|+ |V 12FV 22

|Y |V̂ T
21(V 22V

T
22)−1|

)
,

where Dvec(Y ) = vec(Υ) gives Y S2
1 − Σ̃T

2 Σ̃2Y

[
0p 0
0 Ik

]
= Υ, leading to the expression of

yi = Y ei in (4.15).
For the componentwise condition number, it follows that

c(Xt, L,H) =

∥∥∥∥ |φ′(c)| · |c|φ(c)

∥∥∥∥
∞

=

∥∥∥∥ |MN |vec([|L| |H|])
vec(|Xt|)

∥∥∥∥
∞
,

and the upper bound cu(Xt, L,H) follows obviously.
The following result is straightforward from Theorem 4.5.
Corollary 4.6. With the notations in Theorem 4.1 , if for k = n − p, σ̃k > σ̃k+1 and V 22

is nonsingular, then the mixed and componentwise condition numbers for the TLSE solution

Xn = −V 12V
−1
22 satisfy

m(Xn, L,H) =
‖|MN |vec([|L| |H|])‖∞

‖Xn‖max
, c(Xn, L,H) =

∥∥∥∥ |MN |vec([|L| |H|])
vec(|Xn|)

∥∥∥∥
∞
,
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where

M =
(
V
−T
22 ⊗ V̂ −T11

)
Π(d,n)(S

2
1 ⊗ Id −

[
0p 0
0 In−p

]
⊗ (Σ̃T

2 Σ̃2))−1,(4.16)

N = [0(n+d)×p V 1]T ⊗ (QŨ2Σ̃2)T + Π(n,d)

(
V
T
2 ⊗ [PUCSC QŨ1Σ̃1]T

)
.(4.17)

Moreover, they have upper bounds as

mu(Xn, L,H) =

∥∥∥|V −T11 |Y T |V −1
22 |
∥∥∥

max

‖Xn‖max
, cu(Xn, L,H) =

∥∥∥∥∥ |V
−T
11 |Y T |V −1

22 |
Xn

∥∥∥∥∥
max

,

where the i-th columns of Y and Υ are given by (4.14)-(4.15) with t = n.
Theorem 4.7. For the TLSE problem Ax ≈ b subject to Cx = d, assume that for k = n− p,

σ̃k > σ̃k+1 and V 22 is nonzero. Then for matrices M,N given by Corollary 4.6 and the solution
xn, we have the relation

K = MN = T1G(xn)− T2,

where G(x) = [xT − 1]⊗ Ip+q,

T1 = 2ρ−2KxnuT − [C†A KAT ], T2 = K
(

[In 0n×1]⊗ uT
)
,

for C†A = (In −KATA)C†, ρ =
√

1 + ‖xn‖22 and uT =
[
− rT (ÃC̃†) rT

]
with r = Ax− b.

Proof. Note that when k = n− p, d = 1, in (4.16) and (4.17), Π(d,n) = Π(n,d) = In, Σ̃T
2 Σ̃2 =

σ̃2
n−p+1 and

D−1 := (S2
1 ⊗ Id −

[
0p 0
0 In−p

]
⊗ (Σ̃T

2 Σ̃2))−1 = diag(S−2
C , (Σ̃2

1 − σ̃2
n−p+1In−p)

−1).

Following (4.8), the matrices M,N in (4.16)–(4.17) take the form

M = V
−T
22 V̂

−T
11 D−1 = V

−T
22 [In xn]V̂1D

−1 = V
−T
22 [In xn]V̂1diag(S−2

C , (Σ̃2
1 − σ̃2

n−p+1In−p)
−1),

N = N1 +N2 = [0(n+1)×p V 1]T ⊗ (QŨ2Σ̃2)T + V
T
2 ⊗

(
[PUCSC QŨ1Σ̃1]T

)
,

where V̂1 = [V̂ T
11 V̂ T

21]T and V̂11, V̂21 are defined in Theorem 4.1 .

In the following, we first derive an equivalent formula for (Σ̃2
1 − σ̃2

n−p+1In−p)
−1. Let Q̃2 be

given by (2.14), based on the SVD in (2.6): ÃQ̃2 = Ũ1Σ̃1Ṽ
T

1 + Ũ2Σ̃2Ṽ
T

2 , partition

Ṽ = [Ṽ1 Ṽ2] =
n− p

1

[
Ṽ11 Ṽ12

Ṽ21 Ṽ22

]
.

n− p 1

Note that AQ2 is the first n − p columns of ÃQ̃2, therefore AQ2 = Ũ1Σ̃1Ṽ
T

11 + Ũ2Σ̃2Ṽ
T

12, from
which

(4.18)
Y0 := (AQ2)T (AQ2)− σ̃2

n−p+1In−p
= [Ṽ11 Ṽ12]diag(Σ̃2

1 − σ̃2
n−p+1In−p, 0)[Ṽ11 Ṽ12]T = Ṽ11(Σ̃2

1 − σ̃2
n−p+1In−p)Ṽ

T
11,
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in which Ṽ1j satisfies

(4.19) V 1j = Q2Ṽ1j + β−1xC Ṽ2j = Q2Ṽ1j − xCV 2j , j = 1, 2,

according to the relation V = Q̃2Ṽ . Moreover Ṽ22 = −βV 22 is nonzero. By Lemma 2.1(a), Ṽ11

is nonsingular. From (4.18), we obtain

(4.20) (Σ2
1 − σ̃2

n−p+1In−p)
−1 = Ṽ T

11Y
−1

0 Ṽ11.

It should be noted that for any column vector z and matrices Mi,

M1(M2 ⊗ zT ) = (M1M2)⊗ zT , zT ⊗M3 = M3(zT ⊗ I).

With V̂1 = [VC V 1] and the expressions in (4.20), we therefore obtain

MN1 =

(
[In xn]V̂1

[
0p×(n+1)

Ṽ T
11Y

−1
0 Ṽ11V

T
1

])
⊗ (QŨ2Σ̃2V

−1
22 )T

=
(
[In xn]V 1Ṽ

T
11Y

−1
0 Ṽ11V

T
1

)
⊗ (QŨ2Σ̃2V

−1
22 )T ,

MN2 = V̂ −T11 D−1
(

[−xTn 1]⊗ [PUCSC QŨ1Σ̃1]T
)

= [In xn]V̂1D
−1[PUCSC QŨ1Σ̃1]T

(
[−xTn 1]⊗ Ip+q

)
= [In xn](C̃†PT + V 1Ṽ

T
11Y

−1
0 (Ũ1Σ̃1Ṽ

T
11)TQT )([−xTn 1]⊗ Ip+q),

in which

(4.21)

Ũ2Σ̃2V
−1
22 = ÃQ̃2Ṽ2V

−1
22 = ÃV 2V

−1
22 = [A b]

[−xn
1

]
= −r.

Ũ1Σ̃1Ṽ
T

11 = Ũ1Σ̃1Ṽ
T

1

[
In−p

0

]
= [(ÃQ̃2)− Ũ2Σ̃2Ṽ

T
2 ]
[
In−p

0

]
= AQ2 − Ũ2Σ̃2V

−1
22 V 22Ṽ

T
12 = AQ2 + rV 22Ṽ

T
12,

and

(4.22)

Ṽ11V
T
1 = [Ṽ11Ṽ

T
11 Ṽ11Ṽ

T
21]Q̃T2 = [In−p − Ṽ12Ṽ

T
12 − Ṽ12Ṽ

T
22]Q̃T2

=
(

[In−p 0]− Ṽ12Ṽ
T

2

)
Q̃T2 = [QT2 0]− Ṽ12V

T
2

= [QT2 0]− Ṽ12V
T
22[V

−T
22 V

T
12 1] = [QT2 0] + Ṽ12V

T
22[xTn − 1].

Therefore

(4.23) [In xn]V 1Ṽ
T

11 = Q2.

Moreover, note that the Greville’s method [2, Chapter 7, Section 5] gives

C̃† =

[ (
In − ω−1xCx

T
C

)
C†

ω−1xTCC
†

]
, ω = 1 + ‖xC‖22.
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Combining this with the expression for xn in (2.16) with K = Q2Y
−1

0 QT2 , rC = AxC − b, we
have

(4.24)
[In xn]C̃† −KAT ÃC̃†
= (In − ω−1KAT rCxTC)C† −KAT (A− ω−1rCx

T
C)C† = (In −KATA)C†.

Besides, according to (4.19), the matrix K applying on Q2Ṽ12V
T
22 gives

(4.25) KQ2Ṽ12V
T
22 = K(V 12 + xCV 22)V

T
22 = K(−xn + xC)V 22V

T
22 = −ρ−2Kxn,

where V 22V
T
22 = ‖V 22‖22 = ρ−2 based on the fact that [xTn − 1] = ρ

[
V
T
12 V

T
22

]T
for ρ2 =

1 + ‖xn‖22, and K(xC − xn) = −Kxn since QT2 xC = 0.

Combining (4.21)-(4.25) with uT = rTQT =
[
− rT (ÃC̃†) rT

]
, we have

MN1 = −
[
Q2Y

−1
0 QT2

(
[In 0] +Q2Ṽ12V

T
22[xTn − 1]

)]
⊗ uT

= −
(
K[In 0]− ρ−2Kxn[xTn − 1]

)
⊗ uT

= −K([In 0]⊗ uT ) + (ρ−2KxnuT )([xTn − 1]
)
⊗ Ip+q),

MN2 =
[
[In xn]C̃† 0

]
+KAT [−ÃC̃† Iq] +KQ2Ṽ12V

T
22u

T
)

([−xTn 1]⊗ Ip+q)

=
(

[(In −KATA)C† KAT ]− ρ−2KxnuT
)(

[−xTn 1]⊗ Ip+q
)
.

Consequently,

M(N1 +N2) =
(

2ρ−2KxnuT − [(In−KATA)C† KAT ]
)(

[xTn − 1]⊗ Ip+q
)
−K([In 0]⊗ uT

)
,

which is exactly K. The assertion in the theorem then follows.
Remark 4.8. In Theorem 4.7 the matrix K = T1G(xn) − T2 characterizing the first order

perturbation of the TLSE solution is just the one derived in [25] for the single right-hand-
side TLSE problem. As revealed in [24], the single right-hand-side TLSE can be viewed as
a generalization of the linear least squares problem with equality constraint (LSE), and the
normwise condition numbers of TLSE in [24] includes the ones for LSE problems. Therefore the
normwise condition numbers of multidimensional TLSE problem unify the counterparts for the
single right-hand-side TLSE [24] and LSE [7] problems.

Remark 4.9. It is observed that the formulae for three types of condition numbers involve
the Kronecker product which might lead to large storage and computational cost. For mixed
and componentwise condition numbers, we can use their upper bounds as alternatives, while for
the normwise condition numbers, as did in [50], we can compute

κabs(Xt, L,H) = ‖H̆‖2 = ‖H̆T H̆‖1/22 , for H̆ = (H1 +H2)GZ = (H1 +H2)D−1Z̆,

by applying the power method to the matrix H̆T H̆, in which D is defined in Theorem 4.5, Z̆ =[
It ⊗ Σ̃T

2 S1 ⊗ In+d−t
]
Z. In the power scheme, the matrix-vector multiplications associated
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with H̆ and H̆T can be transformed into Kronecker product-free operations, say for H̆f , where
f = [fT1 fT2 ]T with fi = vec(Fi) with F1 ∈ R(p+q)×t, F2 ∈ R(n+d−t)×t,

g := H̆f = (H1 +H2)D−1vec

(
(QŨ2Σ̃2)TF1

[
0p 0
0 Ik

]
+ F2

[
SC −UTC (ÃC̃†)T Ũ1Σ̃1

0 Σ̃1

])
= (H1 +H2)vec(T ) = vec

(
(V 12 +XtV 22))T V̂ T

21(V 22V
T
22)−1 + (V 11 +XtV 21)T TV

†
22

)
,

where ti = Tei satisfies

ti = (s2
i In+d−t − τiΣ̃T

2 Σ̃2)−1

(
(QŨ2Σ̃2)TF1

[
0p 0
0 Ik

]
+ F2

[
SC −UTC (ÃC̃†)T Ũ1Σ̃1

0 Σ̃1

])
ei,

in which si, τi are the same as those in Theorem 4.5. The Kronecker product-free expression
associated with H̆T g can be derived in a similar manner. Here we omit these.

Remark 4.10. If the matrix A has a linear structure so that it can be represented by A =∑̀
i=1

αiSi and

vec(A) =
∑̀
i=1

αivec(Si) = Φstruct
A aaa, Φstruct

A = [vec(S1), vec(S2), · · · , vec(S`)],

where S1, S2, · · · , S` are linearly independent basis of structured matrices, and aaa = [α1, α2, · · · , α`]T .
By the statement in [23, Theorem 4.1], Φstruct

A is column orthogonal and has full column rank,
with at most one nonzero entry in each row. If B,C,D also have linear structures, then there
exist column orthogonal matrices Φstruct

A,B ,Φstruct
C,D ,Φstruct

L,H and a permutation matrix Π so that

vec([A B]) = Φstruct
A,B

[
aaa
bbb

]
:=

[
Φstruct
A 0
0 Φstruct

B

] [
aaa
bbb

]
,

vec([C D]) = Φstruct
C,D

[
ccc
ddd

]
, vec([L H]) = Φstruct

L,H [cccT dddT aaaT bbbT ]T ,

where Φstruct
L,H = Πdiag(Φstruct

C,D ,Φstruct
A,B ), and Π is the permutation matrix such that vec([L H]) =

Π
[

vec([C D])
vec([A B])

]
.

For the perturbed TLSE problem, if we restrict the perturbation matrices [∆L ∆H] to
have the same structure as that of [L H], that is, vec([∆L ∆H]) = Φstruct

L,H εεε where εεε =

[∆cccT ∆dddT ∆aaaT ∆bbbT ]T . By defining the mapping φ such that φ(ccc,ddd,aaa,bbb) = xtlse, the first order
perturbation result becomes ∆x = KΦstruct

L,H εεε+O(‖εεε‖22) based on (4.1). According to the concept
of condition numbers, the relative normwise, mixed and componentwise condition numbers for
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structured TLSE take the following forms

κstruct(ccc,ddd,aaa,bbb) = ‖KΦstruct
L,H ‖2

‖[cccT dddT aaaT bbbT ]‖2
‖xtlse‖2

,

mstruct(ccc,ddd,aaa,bbb) =

∥∥|KΦstruct
L,H | · [|ccc|T |ddd|T |aaa|T |bbb|T ]T

∥∥
∞

‖xtlse‖∞
,

cstruct(ccc,ddd,aaa,bbb) =

∥∥∥∥∥ |KΦstruct
L,H | · [|ccc|T |ddd|T |aaa|T |bbb|T ]T

|xtlse|

∥∥∥∥∥
∞

.

5. Numerical experiments. In this section, we present numerical examples to verify our
results. The following numerical tests are performed via MATLAB with machine precision
u = 2.22e− 16 in a laptop with Intel Core (TM) i5-5200U CPU.

Example 5.1. In this example, we apply the multidimensional TLSE model to solve a color
image deblurring problem with constraints on color channels. Based on the RGB color space, a
color image is represented by a three-dimensional vector function,

u(x, y) =
[
ur(x, y) ug(x, y) ub(x, y)

]T
,

where ur(x, y), ug(x, y) and ub(x, y) denote the red, green and blue channels, respectively, and
(x, y) belongs to a square domain Ω ⊆ R2. Let the domain Ω be divided into d non-intersect
square sub-domains of same size: Ω1, · · · ,Ωd, that is Ω = ∪di=1Ωi and Ωi∩Ωj = ∅ if i 6= j. Now
we present a new parallel and coupling degradation model of color image blurring and noising:

û(x, y) = K ? u(x, y) + b(x, y), (x, y) ∈ Ωi,(5.1)

where

K =

 Krr Kgr Kbr

Krg Kgg Kbg

Krb Kgb Kbb

(5.2)

is a coupling blur operator independent of i with each sub-matrices being real blur operators, ?
is the convolution operation, and b(x, y) is an additional Gaussian noise. The left hand side of
(5.1), û(x, y), is called an observed color image. The aim of color image deblurring and denoising
is to recover the original color image u(x, y) from such observed color image under the parallel
and coupling degradation model (5.1).

Let A ∈ R3n×3n be the discrete operator of K, and ui, bi ∈ Rn denote the discrete forms
of u(x, y) and b(x, y) on Ωi, respectively. Then a new model of color image deblurring and
denoising is proposed by

(5.3) min
E∈R3n×3n, F∈R3n×d

‖[E F ]‖F , subject to (A+ E)U = B + F, CU = D,

where U = [u1 · · · ud], B = [b1 · · · bd] ∈ R3n×d,

C =
[
In In In

]
∈ Rn×3n
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(a) Original (b) Observed(20.6462, 0.6521) (c) Restored(38.0182, 0.9930)

(d) Original (e) Observed(19.4510, 0.8113) (f) Restored(35.2479, 0.9835)

Figure 5.1. The visual comparison of color image prediction: The original color images are in the first column,
the observed color images are in the second column, and the restored color images are in the last column. The
PSNR and SSIM values of observed and restored images are listed in the brackets under the images.

and D ∈ Rn×d is a binary matrix taking 1 or 0 as its entries.
The Gaussian blur operator A and the Gaussian noise are respectively generated by the

Matlab commands: imfilter and randn. The original color images are shown in the first column
of Figure 5.1 and they are of size 512×512, i.e, the square domain is Ω = {(i, j) : 1 ≤ i, j ≤ 512}.
For the first image in Figure 5.1, the number of sub-domains is d = 210 and the size of each
sub-domain is n = 24 × 24 = 28. In the practical implementation, we add extra boundaries
about 8 pixels to each sub-domain and thus extend n to 1024. For the second image in Figure
5.1, the number of sub-domains is d = 28 and the size of each sub-domain is n = 25 × 25 = 210.
Similarly, we add extra boundaries about 8 pixels to each sub-domain and thus extend n to
2304.

The deblurring problem is solved via randomized truncated TLS (RTTLS) algorithm [48]
applied on the WTLS problem (3.4), in which the weighting factor ε = 10−8, and the sample
size l = t + 10. In Figure 5.2, the L-shaped curves (3.9) are plotted for two observed images,
with 10 as the stepsize of t. The regularization parameter t∗ is chosen to be the abscissa of the
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Figure 5.2. The L-curves of

(
t, log10

‖Hε−LεXt(ε)‖
2
F

d+‖Xt(ε)‖2F

)
for solving TLSE based on the weighting method.

point near the corner of the L-curve, with the adjacent decay rate of yt in magnitude smaller
than a threshold τ .

By taking τ = 10−6, we obtain t∗ = 1080, 2420 for restoring two blurred images respectively.
The restorations are shown in the third column of Figure 5.1 and their PSNR and SSIM values
are listed below. It is observed that our method successfully completes the deblurring and
denoising processing and restores color images with high PSNR and SSIM values.

Example 5.2. In this example, we generate small random multidimensional TLSE problems
to verify the rationality of the first order perturbation estimate in Theorem 4.1. The entries in
[C D] and [A B] are generated as random variables uniformly distributed in the interval (0,1),
via Matlab command ‘rand(·)’. Set p = 10, q = 40, n = 40, d = 5, and let the perturbations to
the data be given by

[∆C ∆D] = ε ∗ rand(p, n+ d), [∆A ∆B] = ε ∗ rand(q, n+ d).

Choose t = 10, 20, 30, 40 and compute the solutions to the original and perturbed problems via
the QR-SVD method. In Table 5.1, with respect to different ε, we compute the absolute error

η∆Xt = ‖vec(∆Xt)−Kvec([∆L ∆H])‖∞ .

The tabulated results show that η∆Xt = O(ε2), illustrating the rationality of the first order
perturbation estimates in Theorem 4.1.

Example 5.3. In this example, we do some numerical experiments for TLSE from piecewise-
polynomial data fitting problem that is modified from [3, Chapter 16] and [7, Example 3], in
order to compare the sharpness of three types of condition numbers in evaluating the forward
error of the solution.
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Table 5.1
The absolute error of the first order perturbation estimate of vec(∆Xt)

t 10 20 30 40

ε = 10−2 1.9e-4 6.3e-4 5.2e-4 3.0e-4
ε = 10−4 5.6e-8 2.3e-8 3.7e-8 2.1e-8
ε = 10−6 2.7e-12 3.7e-12 1.8e-12 1.5e-12

Given N points (ti, yi) on the plane, we are seeking to find a piecewise-polynomial function
f(t) fitting the above set of the points, where

f(t) =

{
f1(t), t ≤ a,
f2(t), t > a,

with a given, and f1(t) and f2(t) polynomials of degree three or less,

f1(t) = x1 + x2t+ x3t
2 + x4t

3, f2(t) = x5 + x6t+ x7t
2 + x8t

3, .

The conditions that f1(a) = f2(a) and f ′1(a) = f ′2(a) are imposed, so that f(t) is continuous
and has a continuous first derivative at t = a. Suppose the N data are numbered so that
t1, . . . , tM ≤ a and tM+1, . . . , tN > a. The conditions f1(a) − f2(a) = 0 and f ′1(a) − f ′2(a) = 0
lead to the equality constraint Cx = d for x = [x1, x2, . . . , x8]T and

C =

[
1 a a2 a3 −1 −a −a2 −a3

0 1 2a 3a2 0 −1 −2a −3a2

]
, d =

[
0
0

]
.

The vector x that minimizes the sum of squares of the prediction errors

M∑
i=1

(f1(ti)− yi)2 +

N∑
i=M+1

(f2(ti)− yi)2,

gives minx ‖Ax− b‖2, where

A =



1 t1 t21 t31 0 0 0 0
1 t2 t22 t32 0 0 0 0
...

...
...

...
...

...
...

...
1 tM t2M t3M 0 0 0 0
0 0 0 0 1 tM+1 t2M+1 t3M+1

0 0 0 0 1 tM+2 t2M+2 t3M+2
...

...
...

...
...

...
...

...
0 0 0 0 1 tN t2N t3N


, b =



y1

y2
...
yM
yM+1

...
yN


,

and the matrix A is of 50% sparsity. If more than one observation vector is allowed, the data
fitting problem becomes the multidimensional TLSE problem (1.2).
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Take M = 200, N = 400 and sample ti ∈ [0, 1] randomly. For a randomly generated
piecewise-polynomial function f(t) with a predetermined a, we compute the corresponding func-
tion value yi = f(ti). Since the matrices A,C do not have linear structures, we consider random
componentwise perturbations on the data as

(5.4) ∆L = 10−12 · EN+2,8 � L, ∆H = 10−12 · EN+2,d �H,

where Es,t is the random s × t matrix whose entries are uniformly distributed on the interval
(0,1), � denotes the entrywise multiplication.

For simplicity let κn,m, c denote the relative normwise, mixed and componentwise condition
numbers given in Theorem 4.2 and Theorem 4.5, respectively. Set

x = vec(Xt), εn =
‖[∆L ∆H]‖F
‖[L H]‖F

, εc = min{ε : |∆L| ≤ ε|L|, |∆H| ≤ ε|H|},

where t is a random integer between p and n such that V 22 is of full row rank, and the quantity
εn is used to evaluate the upper bound of the forward error ‖∆x‖2‖x‖2 via εnκn, while εc is to derive

upper bounds for ‖∆x‖∞‖x‖∞ , ‖∆x
x ‖∞ via mixed and componentwise condition numbers. Moreover

we let ρ = ρ
(2)
ACη

σ
k be the factor for upper bounds of κabs(Xt, L,H).

We list numerical results with respect to different a, and for each a, we generate two different
problems and compare the estimated upper bound with actual relative forward errors. It is
observed that for fixed a, the problems with a larger ‖Xt‖22 and moderate ρ produce larger
condition number estimates, which illustrates that the norm ‖Xt‖2 is a factor to affect the
condition number of TLSE problem. However, whether ‖Xt‖2 is big or small, the estimated
upper bounds of the forward error via εnκn, εcm, εcc are about one or two orders of magnitude
larger than the actual forward error of the solution. Among three upper bounds κun,m

u, cu of
condition numbers, the normwise condition number-based upper bound κun is acceptable and is
about one or two orders of magnitude larger than κn. The upper bounds mu, cu are sharper,
which are at most one order of magnitude larger than the corresponding exact condition numbers,
therefore they are good estimates of corresponding condition numbers.

Example 5.4. This example is modified from [1]. We test how the ill-conditioning of C̃ and
small singular values gap affect the condition numbers and the accuracy of the solutions. Set
p = d = 5, n = 10, q = 20, k = 3, t = p + k = 8, and let Q̃ be an arbitrary (n + d) × (n + d)
orthogonal matrix and Q̃1 be the submatrix of Q̃ by taking its first p columns. Let U0 be an
arbitrary p × p orthogonal matrix, y, z be unit column vectors of length q, n + d, respectively.
Set

C̃ = [C D] = U0diag([1, 0.5, 0.1, 0.1, κ−1
C ])Q̃T1 , Ã = [A B] = ÂQ̃T , with

Â = (Iq − 2yyT )[Σ̂ O](In+d − 2zzT ),

Σ̂ = diag(10, 8, 1, 1, 1, 1, 1, 1− δ/2, 1− δ, 1− 2δ, 1/6, 1/7, · · · , 1/10]),

where κC is used to control the condition number of [C D]. Note that ÃQ̃2 is the last n+ d− p
columns of ÃQ̃, and by the interlacing theorem of the singular values, the relation 1 = σj(ÃQ̃) ≥
σj(ÃQ̃2) ≥ σp+j(ÃQ̃), for j = k, k + 1 and therefore 0 < δ < 5/12 can be used to control the

gap of the singular values σ̃k, σ̃k+1 of ÃQ̃2.
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Table 5.2
Comparisons of forward errors and upper bounds for the perturbed TLSE problem

a ‖Xt‖22 ρ ‖∆x‖2
‖x‖2 εnκn εnκ

u
n

‖∆x‖∞
‖x‖∞ εcm εcm

u ‖∆x
x ‖∞ εcc εcc

u

0.1 4.2 12.0 2.2e-13 2.1e-11 7.7e-10 2.6e-13 3.8e-12 1.2e-11 7.3e-13 6.9e-12 3.2e-11
1.6e5 76.0 1.1e-11 3.0e-9 7.7e-7 9.8e-12 9.1e-10 1.7e-9 1.5e-10 2.1e-8 2.8e-8

0.3 4.2 12.0 1.2e-13 2.1e-11 7.5e-10 1.7e-13 4.0e-12 1.4e-11 5.2e-13 7.2e-12 3.1e-11
2.4e5 42.0 7.4e-12 3.5e-9 5.2e-7 6.4e-12 1.2e-9 3.0e-9 4.3e-11 6.4e-9 1.3e-8

0.5 5.6 12.0 1.8e-13 4.7e-11 8.2e-10 2.3e-13 1.2e-11 3.3e-11 2.7e-11 2.0e-9 7.2e-9
5.3e4 68.0 5.8e-12 1.0e-9 3.8e-7 6.8e-12 7.8e-10 1.6e-9 1.2e-9 1.0e-7 1.6e-7

0.7 3.0 11.0 1.2e-13 2.2e-11 7.1e-10 1.4e-13 4.8e-12 1.6e-11 2.7e-13 8.4e-12 3.0e-11
1.3e7 75.0 1.4e-10 1.5e-8 7.0e-6 1.4e-10 6.5e-9 1.1e-8 2.3e-8 1.1e-6 1.9e-6

0.9 2.3 11.0 4.0e-14 2.2e-11 6.9e-10 5.8e-14 5.7e-12 1.9e-11 8.0e-14 7.9e-12 2.8e-11
5.2e8 42.0 1.0e-9 1.0e-7 2.7e-5 1.3e-9 7.6e-8 2.1e-7 1.7e-9 5.4e-7 1.0e-6

Consider the same perturbation as in (5.4), for different κC and δ, we compute the forward
errors and upper bounds via three types condition numbers in Table 5.3. It is observed that the
estimated upper bounds of the forward errors via εnκn, εcm, εcc are about one or two orders of
magnitude larger than the corresponding forward errors of the solutions, even the quantity ρ is
very large. For the compact upper bounds mu, cu of condition numbers, mu, cu are very sharp
in most cases, while κun is not robust against the ill-conditioning of C̃ and sometimes they are

three orders of magnitude larger than κn and five or six orders of magnitude larger than ‖∆x‖2‖x‖2 .

Table 5.3
Comparisons of forward error and upper bounds for the perturbed TLSE problem

σ ‖Xt‖22 ρ ‖∆x‖2
‖x‖2 εnκn εnκ

u
n

‖∆x‖∞
‖x‖∞ εcm εcm

u ‖∆x
x ‖∞ εcc εcc

u

κC = 101

0.1 2.1 2.4e3 2.1e-12 5.4e-10 3.9e-8 1.7e-12 3.4e-11 7.8e-11 3.2e-11 8.6e-10 2.1e-9
0.01 0.71 6.7e3 4.2e-12 2.0e-10 6.5e-8 4.9e-12 1.4e-10 1.5e-10 1.1e-8 1.9e-7 3.0e-7
0.001 0.9 1.6e5 1.1e-10 1.2e-8 2.4e-6 1.4e-10 3.1e-9 4.2e-9 3.6e-10 1.1e-8 1.3e-8

κC = 103

0.1 0.74 1.2e5 1.1e-10 1.5e-8 1.4e-6 1.2e-10 1.1e-9 2.3e-9 6.5e-10 1.4e-8 4.5e-8
0.01 2.1 9.8e5 7.7e-11 8.2e-9 8.7e-6 6.7e-11 6.3e-10 1.4e-9 4.7e-9 3.6e-8 9.5e-8
0.001 0.51 5.5e6 1.2e-10 2.7e-8 7.7e-5 1.5e-10 3.3e-9 5.3e-9 3.6e-9 9.9e-8 2.4e-7

κC = 106

0.1 2.4 8.9e7 2.7e-8 9.7e-6 1.4e-3 3.4e-8 6.2e-7 1.2e-6 6.6e-7 2.7e-5 1.3e-4
0.01 4.8 6.1e8 1.2e-7 3.5e-5 1.2e-2 1.1e-7 1.2e-6 2.9e-6 2.2e-6 2.8e-5 6.7e-5
0.001 2.0 4.6e9 2.0e-8 1.1e-5 6.5e-2 2.1e-8 2.5e-7 4.6e-7 4.6e-7 5.5e-6 1.8e-5

6. Conclusion. In this paper, we investigate the solution of multidimensional TLSE prob-
lem and prove that it is equivalent to the multidimensional weighted TLS solution in the limit
sense, with the aid of perturbation theory of invariant subspace. Based on this close relation,
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various numerical algorithms for TLS can be developed for solving TLSE via the weighting
method. Moreover, the closed formula for the first order perturbation estimate of the mini-

mum Frobenius norm TLSE solution Xt = −V 12V
†
22 is derived. The expressions for normwise,

mixed and componentwise condition numbers of problem TLSE are also presented, as well as
their computable upper bounds. All expressions and upper bounds of these condition numbers
generalize those for the TLSE problem [25] and multidimensional TLS problem [30].

The effectiveness of the weighting method is shown to solve a color image deblurring and
denoising problem. Some numerical examples are also given to demonstrate the effectiveness in
estimating the forward errors. Tightness of upper bounds for mixed and componentwise condi-
tion numbers are shown in numerical examples, even for ill-conditioned problems, while it is not
necessarily tight for the upper bounds of the normwise condition number. Therefore in order to
derive good estimates of forward errors via normwise condition number, we recommend using
power scheme to compute the true value to avoid Kronecker product operations.

Acknowledgments. The authors are grateful to the handling editor and two anonymous
referees for their useful comments and suggestions, which greatly improved the original presen-
tation.
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