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Abstract. The main aim of this paper is to develop the quaternion generalized minimal residual
method (QGMRES) for solving quaternion linear systems. Quaternion linear systems
arise from three-dimensional or color imaging filtering problems. The proposed quater-
nion Arnoldi procedure can preserve quaternion Hessenberg form during the iterations.
The main advantage is that the storage of the proposed iterative method can be reduced
by comparing with the Hessenberg form constructed by the classical GMRES iterations
for the real representation of quaternion linear systems. The convergence of the proposed
QGMRES is also established. Numerical examples are presented to demonstrate the ef-
fectiveness of the proposed QGMRES compared with the traditional GMRES in terms
of storage and computing time.
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1. Introduction. Let Q denote the quaternion skew-field and Qm×n the set of
m×n matrices on Q. A quaternion is expressed [1] as a = a0 + a1i + a2j + a3k with
a0, a1, a2, a3 ∈ R, and three imaginary units i, j,k satisfying i2 = j2 = k2 = ijk =
−1. Let Q denote the quaternion skew-field and Qm×n the set of m×n matrices on
Q. The quaternion linear systems are of the form

(1.1) Ax = b,

where A ∈ Qn×n is an invertible n×n quaternion matrix, b ∈ Qn is an n-dimensional
quaternion vector, and x ∈ Qn is an unknown quaternion vector. Such linear
systems arise from many scientific applications such as the decoding process of a
quaternion convolutional neural network [11, 13], color image denoising [6, 8], and
three-dimensional signal processing [19]. The main aim of this paper is to develop
iterative methods for solving large-scale quaternion linear systems.

Existing iterative methods of solving quaternion linear systems are based on the
real or complex representation, whose dimension is expanded to four or two times
of the original dimension. For instance, the quaternion linear systems (1.1) can be
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equivalently rewritten to a real matrix equation

(1.2) R(A)R(x) = R(b),

where R(·) is a linear homeomorphic mapping from quaternion matrices (or vectors)
to their real counterpart. Even though there are many different real counterparts,
it is interesting to note that they are permutation equivalent; see [5, Remark 4.7].
In the following discussion, we consider the following mapping: for any Q = Q0 +
Q1i +Q2j +Q3k ∈ Qm×n,

(1.3) R(Q) =


Q0 −Q1 −Q2 −Q3

Q1 Q0 −Q3 Q2

Q2 Q3 Q0 −Q1

Q3 −Q2 Q1 Q0

 ∈ R4m×4n.

To solve the general (real) linear systems, iterative methods can be employed, for
example, BCG [10], CGS [14], BiCGSTAB [20], FOM [16], or GMRES [17]. Espe-
cially, GMRES is commonly used in the literature. The main idea of GMRES is
to approximate the solution by the Krylov subspace with minimal residual. The
Arnoldi iteration is used to find this subspace. When GMRES is applied to solving
resulting real linear systems arising from quaternion linear systems, a real upper
Hessenberg matrix appears in GRMES iterations. However, the upper Hessenberg
structure cannot be preserved in quaternion representation; see Figure 1(c) in our
numerical example for a demonstration. It is clear in this setting that the storage
size would be increased in GMRES iterations for solving such real equivalent linear
systems arising from quaternion linear systems.

The main aim of this paper is to develop a structure preserving quaternion
GMRES which can inherit the algebraic symmetry of R(A) for solving (1.1). The
main advantage of the proposed method is to save computational operations and
storage. This paper is organized as follows. In Section 2, we review quaternion
matrices. In Section 3, we the present structure preserving quaternion Krylov sub-
space method and the quaternion Arnoldi method. The modified quaternion Arnoldi
method is also proposed. In Section 4, we present the quaternion generalized minimal
residual method (QGMRES) for solving quaternion linear systems and its conver-
gence. In Section 5, numerical examples for three-dimensional signal filtering prob-
lems are presented to illustrate the convergence of the proposed structure preserving
QGMRES method and to demonstrate that its performance is better than that of
the traditional GMRES method. In Section 6, we present concluding remarks.

2. Preliminaries. In this section, we introduce quaternion matrices and the
(right) Hilbert space of quaternion vectors. Notice that Q is an associative but
multiplicatively noncommutative algebra of rank four over R, endowed with an in-
volutory antiautomorphism q = q0 − q1i − q2j − q3k. The quaternion norm |q| is
defined by |q|2 = qq = q20 + q21 + q22 + q23. Every nonzero quaternion is invertible,
and the unique inverse is given by 1/q = q/|q|2. The conjugate transpose of Q is
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defined as Q∗ = QT0 −QT1 i−QT2 j−QT3 k. A quaternion matrix Q is full of column
rank if and only if Qx = 0 has a unique solution x = 0, and moreover, the columns
of Q are orthogonal to each other if Q∗Q = I. We refer to [12, 21, 22] for the theory
of quaternion matrices.

The right-hand- (or left-hand-) side linear combination of quaternion vectors v1,
v2, · · · , vm is denoted by v1α1+v2α1+ · · ·+vmαm (or α1v1+α1v2+ · · ·+αmvm),
where α1,α2, · · · ,αm are quaternion scalars. Here and after, we concentrate on
the right-hand-side linear combination of quaternion vectors, since it has similar
properties to the linear combination of real or complex vectors. Quaternion vectors
v1, v2, · · · , vm are linearly independent if v1α1 + v2α1 + · · ·+ vmαm = 0 holds if
and only if α1 = α2 = · · · = αm = 0; otherwise, they are linearly dependent.

Definition 2.1 (inner product). The inner product of two quaternion vectors,
w = [wi], v = [vi] ∈ Qn, is defined as

(2.1) 〈w,v〉 :=

n∑
i=1

v∗iwi.

The inner product of two quaternion matrices, B = [bij ], C = [cij ] ∈ Qm×n, is
defined as

(2.2) 〈B,C〉 := Trace(C∗B) =
n∑
j=1

m∑
i=1

c∗jibij .

Definition 2.2 (norm). The p-norm of the quaternion vector, v = [vi] ∈ Qn, is
defined as

‖v‖p =
( n∑
i=1

|vi|p
) 1

p , p ≥ 1.

The p-norm and F -norm of the quaternion matrix, Q = [qij ] ∈ Qm×n, are respec-
tively defined as

‖Q‖p = max
x∈Qn/{0}

‖Qx‖p
‖x‖p

, p ≥ 1, ‖Q‖F =
( n∑
j=1

m∑
i=1

|qij |2
) 1

2 .

Let S stand for a linear vector space over H under right scalar multiplication.
From [3], S is called a right quaternion Hilbert space if there exists a quaternionic
scalar product, that is, a map S ×S 3 (u,v) 7→ 〈u,v〉 ∈ H satisfying the following
four properties:

• (Right linearity) 〈vα + wβ,u〉 = 〈v,u〉α + 〈w,u〉β if α, β ∈ H, and
u, v, w ∈ S .
• (Quaternionic hermiticity) 〈v,u〉 = 〈u,v〉 if u, v ∈ S .
• (Positivity) If u ∈ S , then 〈u,u〉 ≥ 0 and u = 0 if 〈u,u〉 = 0.
• S is complete with respect to its natural distance, defined by

d(v,u) =
√
〈v − u,v − u〉

for any u, v ∈ S .
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Clearly, the n-dimensional quaternion vector space Qn is a right quaternionic Hilbert
space with the inner product defined as (2.1). All quaternion vectors in

K = {v1α1 + v2α1 + · · ·+ vmαm | vj ∈ Qn, αj ∈ Q, j = 1, · · · ,m}

generate a subspace of Qn of dimension rank([v1,v2, · · · ,vm]).

3. Quaternion Arnoldi Method. In this section, we define the quaternion Krylov
subspace and present the quaternion Arnoldi method with structure preserving. We
concentrate on the new theoretical results which are different from traditional ones.
We solve (1.2) via the real number calculation but it is only necessary to store or
overwrite four components of quaternion numbers. Theoretically, the JRS-symmetry
(defined in [4, 5]) of the real counterpart is inherited. Let A = A0+A1i+A2j+A3k ∈
Qn×n with A0, A1, A2, A3 ∈ Rn×n in (1.2). The real counterpart of A is defined by
the linear homeomorphic mapping R,

(3.1) R(A) =


A0 −A1 −A2 −A3

A1 A0 −A3 A2

A2 A3 A0 −A1

A3 −A2 A1 A0

 ∈ R4n×4n.

Clearly, R(A) is a JRS-symmetric matrix as defined in [4, 5]. Any real JRS-
symmetric matrix is surely a real counterpart of a quaternion matrix. We define
the inverse mapping of R on the real JRS-symmetric matrices by R−1(R(A)) = A.

Lemma 3.1. Suppose A = Q0 +Q1i+Q2j+Q3k is an n-order square quaternion
matrix and m is a positive integer not bigger than n. There exists a quaternion
matrix W ∈ Qn×m with unitary columns such that

(3.2) W∗AW = H

is of upper Hessenberg form.
Proof. Based on the real structure-preserving transformations proposed in [4, 5],

we can find a JRS-symplectic matrix with orthogonal columns

(3.3) W :=


W0 −W1 −W2 −W3

W1 W0 −W3 W2

W2 W3 W0 −W1

W3 −W2 W1 W0

 ∈ R4n×4m

such that

(3.4) W TR(A)W = H :=


H0 −H1 −H2 −H3

H1 H0 −H3 H2

H2 H3 H0 −H1

H3 −H2 H1 H0

 ∈ R4m×4m
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is an upper JRS-Hessenberg matrix, where H0 ∈ Rn×n is upper Hessenberg, and H1,
H2, H3 ∈ Rn×n are upper triangular. Let W = R−1(W ) and H = R−1(H); then
(3.4) can be rewritten as

(3.5) R(W)TR(A)R(W) = R(H).

By applying the inverse homeomorphic mapping R−1 on both sides of (3.5), we
immediately obtain the partial upper Hessenberg form (3.2).

We remark that there are many different real counterparts of A, and all R(A)
are permutation equivalent [5, Remark 4.7]. Thus the results in Lemma 3.1 are valid
for different real counterparts of A.

The decomposition in (3.4) is called the structure preserving of four real matrices
A0, A1, A2, A3 ∈ Rn×n, since the JRS-symmetry of R(A) is preserved. In the
practical implementation, we need not generate the explicit real counterparts (the
4-by-4 real block matrices) of quaternion matrices but only generate and store their
four parts (say, Ai’s, Wj ’s and Hi’s). This saves computational operations and
storage. We refer to [4, 5] for the details. In contrast, the classical Arnoldi procedure
[15] applied to R(A) generates a matrix V ∈ R4n×4m with orthogonal columns such
that

V TR(A)V = Ĥ ∈ R4m×4m,

where Ĥ ∈ R4m×4m is of upper Hessenberg form. Here Ĥ does not inherit the
JRS-symmetry of R(A) and Ĥ cannot be mapped back to the quaternion upper
Hessenberg matrix; see [5].

Example 3.1. Suppose A ∈ Qn×n is a randomly generated quaternion matrix.
Let n = 1000 and m = 20. By the structure preserving quaternion Arnoldi method
(see Section 3.2), we compute the upper Hessenberg quaternion matrix H = H0 +
H1i + H1j + H3k ∈ Q20×20. By the classical Arnoldi method, we also compute the
upper Hessenberg matrix Ĥ ∈ R80×80. The structures of H, R(H) and Ĥ are shown
in Figure 1. We can see that R(H) is JRS-symmetric with H0 upper Hessenberg
and H1, H2, H3 upper triangular (see Figures 1(a) and 1(b)), but Ĥ loses the JRS-
symmetry of R(A) (see Figure 1(c)).

3.1. Quaternion Krylov Subspace. The Krylov subspace of coefficient matrix
A ∈ Fn×n and a nonzero vector v ∈ Fn is defined by

(3.6) Km(A,v) := span{v,Av, · · · ,Am−1v}

with any positive integer m. Each element of Km(A,v) is a (right-hand-side) linear
combination of v,Av,A2v, · · · , and Am−1v. Note that quaternions are multiplica-
tively noncommutative, the above-mentioned linear combination cannot be rewrit-
ten as the multiplication of a polynomial with degree less than m− 1 of A and the
vector v. These results are different from those [15] when the field of numbers is
real or complex. To develop the quaternion Arnoldi procedure, we need to directly
rely on the (right-hand side) linear combination of multiplications of the power of
quaternion matrix A and the quaternion vector v.
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Figure 1. The spy figures of H, R(H), Ĥ, and H̃.

For convenience, the (right-hand-side) linear combination of v, Av, A2v, · · · ,
and Am−1v is denoted by

(3.7) Lm(A,v) := vα0 + Avα1 + · · ·+ Am−1vαm−1,

where α0,α1, · · · ,αm−1 are quaternion scalars. The dimension of Km(A,v) is
exactly the rank of the Krylov subspace matrix, K := [v,Av,A2v, · · · ,Am−1v].
It is expected to increase with m increasing, before arriving at the maximal value,
called the grade of v (with respect to A).
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Definition 3.2 (grade). The grade of v with respect to A is the smallest positive
integer, µ, such that v,Av, · · · ,Aµ−1v are linearly independent but v,Av, · · · ,Aµ−1v,
Aµv are linearly dependent.

Below are some important properties of quaternion Krylov subspace Kµ(A,v).
Theorem 3.3. Let µ be the grade of v with respect to A. Then Kµ(A,v) is

invariant under A and Km(A,v) = Kµ(A,v) for all m ≥ µ.
Proof. We first prove that Kµ(A,v) is invariant under A. According to the

definition (3.6),

Kµ(A,v) := span{v,Av,A2v, · · · ,Aµ−1v}.

Each vector in Kµ(A,v) can be denoted by Lµ(A,v), as in (3.7), and then

ALµ(A,v) = Avα0 + A2vα1 + · · ·+ Aµvαµ−1.

Since the grade of v is µ, the quaternion vector Aµv can be linearly represented by
former quaternion vectors v,Av, · · · ,Aµ−1v. So that Aµv still belongs to Kµ(A,v)
and thus AKµ(A,v) ⊆ Kµ(A,v). We have proved that Kµ(A,v) is invariant under
A. The second part of the conclusion, Kµ(A,v) = Km(A,v), holds naturally,
because any quaternion vector Lm(A,v) can be rewritten into Lµ(A,v) for any
positive integer m bigger than µ.

Theorem 3.4. Km(A,v) is of dimension m if and only if the grade µ of v with
respect to A is greater than or equal to m, i.e.,

dim(Km(A,v)) = m⇔ µ ≥ m.

Therefore,

(3.8) dim(Km(A,v)) = min{m,µ}.

Proof. The proof follows Theorem 3.3 immediately.
Theorem 3.5. Let Qm be any projector onto Km(A,v) and Am := QmA|Km

the
section of A to Km(A,v). Then for any linear combination Li(A,v) of the form
(3.7),

(3.9) Li(A,v) = Li(Am,v), 1 ≤ i ≤ m,

and

(3.10) QmLm+1(A,v) = Lm+1(Am,v).

Proof. First we prove that Li(A,v) = Li(Am,v) holds for 1 ≤ i ≤ m. It
is sufficient to show the property holds for the special case Li(A,v) = Ai−1v,
i = 1, · · · ,m. The property is true for i = 1. Assume that it is true for i (1 ≤ i < m),
that is,

(3.11) Li(A,v) = Li(Am,v).
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Multiplying (3.11) by A on both sides yields

(3.12) Li+1(A,v) = Ai+1v = A(Aiv) = ALi(A,v) = ALi(Am,v).

If i ≤ m− 1, we have Li+1(A,v) ∈ Km(A,v), and therefore if (3.12) is multiplied
on both sides by Qm, then

(3.13) Li+1(A,v) = QmALi(Am,v).

Under the assumption (3.11), Li(Am,v) ∈ Km holds for i ≤ m− 1. Looking at the
right-hand side of (3.13), we observe that

(3.14) QmALi(Am,v) = QmA|Km
Li(Am,v) = Li+1(Am,v).

Combining (3.13) and (3.14), we have Li+1(A,v) = Li+1(Am,v) with i ≤ m−1. By
induction, we have proved (3.9). Now it only remains to prove (3.10). Multiplying
the equation Lm(A,v) = Lm(Am,v) by QmA on both sides, we can immediately
observe QmLm+1(A,v) = Lm+1(Am,v).

According to Theorem 3.5, one can see that any element represented in the power
basis of Km(A, v) can be represented in the power basis of Km(Am, v).

3.2. Quaternion Structure Preserving Procedure. The quaternion Arnoldi method
is an algorithm for building an orthogonal basis of the quaternion Krylov subspace;
see Algorithm 3.1.

Algorithm 3.1 Quaternion Arnoldi procedure

1: Choose a quaternion vector v1, such that ‖v1‖2 = 1
2: for j = 1, 2, · · · ,m do
3: Compute ωj = Avj
4: for i = 1, 2, · · · , j do
5: Compute hij = 〈Avj ,vi〉
6: Compute ωj := ωj − vihij
7: end for
8: hj+1,j = ‖ωj‖2
9: If hj+1,j = 0 then stop

10: vj+1 = ωj/hj+1,j

11: end for

In the calculation, the required quaternion matrix-vector multiplication and in-
ner product are realized by the function (3.1) as follows,

Avj = R−1
(
R(Avj)

)
= R−1

(
R(A)R(vj)

)
,(3.15)

〈Avj ,vi〉 = R−1
(
R(v∗iAvj)

)
= R−1

(
R(v∗i )R(Avj)

)
.(3.16)

The core work is on the real calculation of R(A)R(vj) and R(v∗i )R(Avj). Note
that R(A)R(vj) consists of four real matrix-vector products and R(v∗i )R(Avj)
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needs four inner products of real vectors. With the above realization (3.15) and
(3.16), we are in fact implementing the structure preserving reduction of four real
parts of A as in (3.4). Assume that Algorithm 3.1 does not stop before the mth
step. Then the quaternion vectors v1,v2, · · · ,vm form an orthonormal basis of
the quaternion Krylov subspace Km(A,v1) = span{v1,Av1, · · · ,Am−1v1}. Let
Vm := [v1,v2, · · · ,vm], H̄m denote the (m+ 1)×m quaternion Hessenberg matrix
whose nonzero entries hij are calculated by Algorithm 3.1, and Hm be the matrix
obtained from H̄m by deleting its last row. Then the following relations hold:

AVm = VmHm + ωme∗m(3.17)

= Vm+1H̄m,(3.18)

V∗mAVm = Hm,(3.19)

where em is the mth column of the identity matrix. Let Hm = H0+H1i+H2j+H3k.
Relation (3.19) is indeed computed by the structure preserving reduction:

R(Vm)TR(A)R(Vm) = R(Hm),

where R(Vm) is an orthogonal matrix with algebraic symmetry as in (3.3) and
R(Hm) has the structure on the right-hand side of (3.4).

Note that Algorithm 3.1 may break down in case the norm of ωj vanishes at a
certain step j. In this case, the vector vj+1 cannot be computed, and Kj(A,v1) is
an invariant subspace of A.

Theorem 3.6. The quaternion Arnoldi algorithm breaks down at the jth step (i.e.,
hj+1,j = 0 in Algorithm 3.1) if and only if the grade of v1 with respect to A is j.
Moreover, in this case the quaternion subspace Kj(A,v1) is invariant under A.

Proof. If the degree of v1 is j, then ωj must be equal to zero. Indeed, otherwise
vj+1 can be defined and as a result Kj+1(A,v1) would be of dimension j + 1.
That means v1,Av1, · · · ,Aj−1v1,Ajv1 are linearly independent. Then Theorem
3.4 would imply that µ ≥ j + 1, which is a contradiction. To prove the converse,
assume that ωj = 0. Then the degree µ of v1 must not be smaller than j. It is
impossible that µ < j. Otherwise, by the first part of this proof, the vector ωµ
would be zero and the algorithm would have stopped at the earlier step number µ.
The rest of the result follows from Theorem 3.3.

3.3. Modified Quaternion Arnoldi Procedure. In a practical computational
process, one needs to apply the modified Gram–Schmidt, instead of the standard
Gram–Schmidt, to guarantee the orthogonality of the generated vi’s. With the mod-
ified quaternion Gram–Schmidt alternative, we get the modified quaternion Arnoldi
procedure in Algorithm 3.2. As in the traditional case, Algorithms 3.1 and 3.2 are
mathematically equivalent to each other in exact arithmetic, while the later one is
much more reliable in the presence of the round-off.

Again, the matrix-vector products and inner products in Algorithm 3.2 are im-
plemented by the real calculations in (3.15) and (3.16). In lines 4 to 7 of Algorithm
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Algorithm 3.2 Modified Quaternion Arnoldi procedure

1: Choose a quaternion vector v1 of norm 1
2: for j = 1, 2, · · · ,m do
3: Compute ωj := Avj
4: for i = 1, 2, · · · , j do
5: Compute hij = 〈ωj ,vi〉
6: Compute ωj := ωj − vihij
7: end for
8: hj+1,j = ‖ωj‖2
9: If hj+1,j = 0 then stop

10: vj+1 = ωj/hj+1,j

11: end for

3.2, we generate a quaternion vector ωj orthogonal to v1, · · · ,vj by realization, i.e.,

(3.20) ωj = R−1(R(A)R(vj)−R(v1)R(h1j)−R(v2)R(h2j)−· · ·−R(vj)R(hjj))

with theoretically hij = 〈Avj − v1h1j − v2h2j − · · · − vi−1hi−1,j ,vi〉 (which is
equivalent to hij = 〈Avj ,vi〉 in exact arithmetic, but more stable in practical
implementation). Immediately, one can obtain

Avj = v1h1j + v2h2j + · · ·+ vjhjj + vj+1hj+1,j .

This finally produces the upper Hessenberg decomposition (3.17) and (3.18).
Remark. If A is Hermitian, the reduced upper Hessenberg form Hm will be tridi-

agonal. Indeed, H∗m = V∗mA∗Vm = V∗mAVm = Hm. In this case, the coefficients
hij computed by Algorithm 3.2 are such that

hij = 0, for 1 ≤ i ≤ j − 1, and hj,j+1 = hj+1,j ∈ R, j = 1, · · · ,m.

Moreover, hjj is real since hjj = 〈Avj ,vj〉 = 〈A∗vj ,vj〉 = h∗jj .
In the implementation, we apply the real operations on the four parts of quater-

nion scalars, vectors, and matrices, without storing their real counterparts. This
saves the real operations and storage memory. The quaternion matrix-vector prod-
ucts in line 3 are theoretically computed by the real structure preserving methods
as shown in (3.15). Here we generate the quaternion vector ωj once the first block
column of R(ωj) is obtained. That is, let vj = v0 + v1i + v2j + v3k, then

ωj = w0 + w1i + w2j + w3k,(3.21a) [
wT0 wT1 wT2 wT3

]T
= R(A)

[
vT0 vT1 vT2 vT3

]T
.(3.21b)

Similarly, the computation in line 5 of Algorithm 3.2 is implemented by

hij = h0 + h1i + h2j + h3k,(3.22a) [
h0 h1 h2 h3

]T
= R(vi)

T
[
wT0 wT1 wT2 wT3

]T
.(3.22b)
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Applying (3.21) and (3.22) saves three-quarters of the theoretical costs. That is, the
quaternion matrix-vector and inner products in our method cost only 4n(8n − 1)
and 4(8n− 1) real operations, respectively.

3.4. Comparison with the Block Arnoldi Algorithm. Each quaternion entry of
A can be represented by its real counterpart, and the quaternion coefficient matrix
in (1.1) can be written as follows:

(3.23) Ã =


R(a11) R(a12) · · · R(a1n)
R(a21) R(a22) · · · R(a2n)

...
...

. . .
...

R(an1) R(an2) · · · R(ann)

 ∈ R4n×4n,

where the real counterpart of aij = a
(0)
ij + a

(1)
ij i + a

(2)
ij j + a

(3)
ij k with a

(0)
ij , a

(1)
ij , a

(2)
ij ,

a
(3)
ij ∈ R, is given by

(3.24)


a
(0)
ij −a(1)ij −a(2)ij −a(3)ij
a
(1)
ij a

(0)
ij −a(3)ij a

(2)
ij

a
(2)
ij a

(3)
ij a

(0)
ij −a(1)ij

a
(3)
ij −a(2)ij a

(1)
ij a

(0)
ij

 .

Actually, Ã is permutation equivalent to the matrix in (3.1). Note that Ã can be
viewed as a block matrix with each block of size 4-by-4. Recently, the block Arnoldi
algorithm based on ∗-algebra for solving block linear systems was developed in [9]
and [2]. For the detailed algorithm, we refer to Algorithm 1 in [9]. When this block
Arnoldi method is applied to Ã, we obtain the following decomposition:

(3.25) ÃṼ = Ṽ H̃, Ṽ , H̃ ∈ R4n×4n,

after n iterations. Here H̃ is block upper Hessenberg, i.e., H̃i,j = 0 if j < i − 1.

Moreover, this block Arnoldi method can preserve block structure in H̃, i.e., each
block is in the form of (3.24) or each block is a real counterpart of a quaternion
number. As an example, we show the structure of H̃ in Figure 1(d).

Indeed, Q can be seen as a ∗-algebra but it has the additional structure of not
having any zero-divisors. This is one way to understand why QGMRES never suffers
from linear dependence breakdowns the way block GMRES does (see Section 4.2).
In the block GMRES, the Givens rotations in the more general ∗-algebra context
are suggested to reduce the block upper Hessenberg matrix H̃ in (3.25) to the upper
triangular form [9, Section 3.1]. Although QGMRES and block GMRES are related,
we are able to exploit more specific structural properties of quaternion linear systems
to get a more efficient algorithm (Algorithm 4.1). See the numerical results in Section
5 for the comparisons.



12 JIA AND NG

4. Quaternion Generalized Minimal Residual Method.
In this section, we propose the QGMRES for solving large-scale quaternion linear

systems as in (1.1). Let x0 represent an arbitrary initial guess to the solution of
linear systems (1.1) and the residual vector r0 = b−Ax0. Since if r0 = 0, then x0

is the solution of (1.1), we always assume that r0 6= 0 in the following discussion.
Similar to (3.6), the quaternion Krylov subspace is given by

(4.1) Km(A, r0) = span{r0,Ar0,A2r0, · · · ,Am−1r0}.

We rewrite Km(A, r0) in the short form Km in the following discussion. Any quater-
nion vector x in x0 + Km can be written as

(4.2) x = x0 + Vmy,

where y is an m-vector. The relation (3.19) results in

b−Ax = b−A(x0 + Vmy) = r0 −AVmy

= βv1 −Vm+1H̄my = Vm+1(βe1 − H̄my),(4.3)

where β = ‖r0‖2 6= 0, v1 = r0/β. Defining

(4.4) J(y) := ‖b−Ax‖2,

one can observe from the orthogonality of the columns of Vm+1 that

(4.5) J(y) = ‖βe1 − H̄my‖2.

The QGMRES approximation is the unique quaternion vector from x0 + Km which
minimizes (4.4), and has the general form:

(4.6) xm = x0 + Vmym,

where

(4.7) ym = arg min
y
‖βe1 − H̄my‖2.

Note that it is inexpensive to compute the minimizer ym of the upper Hessenberg
quaternion least-squares problem (HQLS) (4.7) when m is small. The algorithm is
summarized in Algorithm 4.1.
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Algorithm 4.1 QGMRES

1: Compute r0 = b−Ax0, β := ‖r0‖2 6= 0, and v1 := r0/β
2: for j = 1, 2, · · · ,m do
3: Compute ωj := Avj
4: for i = 1, 2, · · · , j do
5: hij = 〈ωj ,vi〉;
6: ωj := ωj − hijvi
7: end for
8: hj+1,j = ‖ωj‖2
9: If hj+1,j = 0 set m := j and go to 12

10: vj+1 = ωj/hj+1,j

11: end for
12: Define (m+ 1)×m quaternion Hessenberg matrix H̄m = [hij ]1≤i≤m+1,1≤j≤m.
13: Compute ym the minimizer of ‖βe1 − H̄my‖2 and xm = x0 + Vmym.

4.1. Solving Upper Hessenberg Quaternion Least-Squares Problem. Suppose
that m steps of the QGMRES iteration have been performed and an (m + 1) ×m
upper quaternion Hessenberg matrix H̄m = [hij ] has been generated. Suppose that

rii = ‖ [hii hi+1,i]
T ‖2 6= 0 for i = 1, · · · ,m. If the subdiagonal element hi+1,i of H̄m

is nonzero, we define the ith generalized quaternion Givens transformation by

Ωi =


Ii−1

g11 g12

g21 g22

Im−i

 ,
where

g11 =
hii
rii
, g21 =

hi+1,i

rii
,(4.8a) {

g12 = |g21|, g22 = −|g21|g−∗21 g∗11 if|hii| ≤ |hi+1,i|;
g22 = |g11|, g12 = −|g11|g−∗11 g∗21 if|hii| > |hi+1,i|.

(4.8b)

Define a unitary quaternion matrix Qm as the product of matrices Ωi, i.e., Qm =
Ω1Ω2 · · ·Ωm. Then we obtain the QR factorization of H̄m and can reduce the upper
Hessenberg least-squares problem (4.7) to an upper tridiagonal least squares problem

(4.9) ym = arg min
y
‖ḡm − R̄my‖2,

in which

R̄m = Q∗mH̄m = [rij ], ḡm = Q∗m(βe1) :=
[
γ1 γ2 · · · γm γm+1

]T
.(4.10)

Notice that the generalized quaternion Givens rotation defined by (4.8) is quite
different from the standard Givens rotations, for instance, g11 6= ḡ22 in the general
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case but |g11| = |g22|; see [5, Section 4.1] for more information. The diagonal entries
of R̄m are nonnegative real numbers, which makes it convenient to compute ym.

Now we analyze the solution of HQLS (4.7) and the residue vector under the
above notation. These results generalize those on the real field in [15] to the quater-
nion skew-field.

Theorem 4.1. Let m ≤ n, and let Rm,gm denote the m × m upper triangular
quaternion matrix and the m-dimensional quaternion vector obtained from R̄m, ḡm
by deleting their last row and component, respectively.

(1) The rank of AVm is equal to the rank of Rm; in particular, if rmm = 0,
then A must be singular.

(2) The vector ym which minimizes ‖βe1 − H̄my‖2 is given by ym = R−1m gm.
(3) The residual vector at step m satisfies

(4.11) b−Axm = Vm+1(βe1 − H̄mym) = Vm+1Qm(γm+1em+1),

and as a result,

(4.12) ‖b−Axm‖2 = |γm+1|.

Proof. These results can be proved in a similar way to those in [15].
Without virtually additional arithmetic operations, one can obtain the residual

norm in a progressive manner at each step of the QGMRES algorithm. Assume
that the first m rotations have already been applied, say, start with (4.10); and the
residual norm is available for xm and the stopping criterion can be applied. If the
residual norm, |γm+1|, is small enough, the process must be stopped. To compute
ym, we develop a back substitution method on the quaternion skew-field (the details
are omitted here). Then the approximate solution is computed by xm = x0+Vmym.
Otherwise, further steps are needed.

4.2. Breakdown of QGMRES . The only possibility of breakdown in the QGM-
RES algorithm (Algorithm 4.1) is when ωj = 0, i.e., when hj+1,j = 0 at a given step
j in the quaternion Arnoldi loop. In this situation, the algorithm stops because the
next quaternion Arnoldi vector cannot be generated. The residual vector is zero in
this case. That means the algorithm delivers the exact solution at this step. Fortu-
nately, the converse is also true: If the algorithm stops at step j with b−Axj = 0,
then hj+1,j = 0.

Theorem 4.2. Let A be a nonsingular quaternion matrix. Then, the QGMRES
algorithm breaks down at step j, i.e., hj+1,j = 0, if and only if the approximate
solution xj is exact.

Proof. If hj+1,j = 0, then g21 = 0. Indeed, since A is nonsingular, then rjj is
nonzero by the first part of Theorem 4.1 and (4.8) implies g21 = 0. Then, the rela-
tions (4.12) and γj+1 = g∗12γj imply that rj = 0. Conversely, if the approximation
is exact at step j and not at step j − 1, then g21 = 0. From the formula (4.8), this
implies that hj+1,j = 0.
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4.3. Convergence of QGMRES . In this section, we establish an upper bound
on the convergence rate of the QGMRES iterates first and then present a global
convergence result.

Let A be an arbitrary square quaternion matrix and assume that L = AK.
Then generalizing the result in [15, Proposition 5.3] to the quaternion skew-field, a
vector x̃ is the result of an (oblique) projection method onto K orthogonally to L
with the starting vector x0 if and only if it minimizes the 2-norm of the residual
vector b−Ax over x ∈ x0 + K , i.e., if and only if

R(x̃) = min
x∈x0+K

R(x),

where R(x) := ‖b−Ax‖2. Indeed, for x̃ to be the minimum solution, it is necessary
and sufficient that y∗(b − Ax̃) = 0 holds for any y ∈ AK , which is precisely
the Petrov–Galerkin condition that defines the approximate solution. Again, notice
that each element of K in QGMRES is represented by a right-hand-side linear
combination of quaternion vectors r0,Ar0, · · · ,Am−1r0, rather than a production
of a polynomial of A and the vector r0 in GMRES.

Theorem 4.3. Let xm be the approximate solution obtained from the mth step of
the QGMRES algorithm, and let rm = b−Axm. Then, xm is of the form

xm = x0 + Lm(A, r0),

and ‖rm‖2 = ‖r0 −ALm(A, r0)‖2 = minj≤m ‖r0 −ALj(A, r0)‖2.
Proof. Recall the definition (3.7) that

Lm(A, r0) = r0α0 + Ar0α1 + · · ·+ Am−1r0αm−1.

The result follows the fact that xm minimizes the 2-norm of the residual in the affine
subspace x0+Km and the fact that Km is the set of all vectors of the form Lj(A, r0)
with j ≤ m.

Theorem 4.4. Assume that A is a diagonalizable quaternion matrix and let A =
XΛX−1, where Λ = diag{λ1,λ2, · · · ,λn} is the diagonal matrix of eigenvalues.
Define

ε(m) = min
α1,··· ,αj∈Q, j≤m

(
max

i=1,··· ,n
(1 + |λi||α1|+ · · ·+ |λji ||αj |)

)
.

Then, the residual norm achieved by the mth step of QGMRES satisfies the inequality

‖rm‖2 ≤ κ2(X )ε(m)‖r0‖2,

where κ2(X ) := ‖X‖2‖X−1‖2.
Proof. Let Lj+1(A, r0) satisfy the constraint Lj+1(0, r0) = r0 (α0 = 1), and x

the vector from Km to which it is associated via b−Ax = Lj+1(A, r0). Then

‖b−Ax‖2 = ‖XLj+1(Λ,X−1r0)‖2 ≤ ‖X‖2‖Lj+1(Λ,X−1r0)‖2
≤ ‖X‖2‖X−1‖2‖r0‖2‖I + |Λ||α1|+ · · ·+ |Λj ||αj |‖2.
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Since Λ is diagonal,

‖I + |Λ||α1|+ · · ·+ |Λj ||αj |‖2 ≤ max
i=1,··· ,n

(1 + |λi||α1|+ · · ·+ |λji ||αj |).

Since xm minimizes the residual norm over x0 + Km, then for any combining
form Lj+1(A, r0),

‖b−Axm‖2 ≤ ‖b−Ax‖2 ≤ ‖X‖2‖X−1‖2‖r0‖2 max
i=1,··· ,n

(1+ |λi||α1|+ · · ·+ |λji ||αj |).

This yields the desired result,

‖b−Axm‖2 ≤ ‖b−Ax‖2 ≤ ‖X‖2‖X−1‖2‖r0‖2ε(m).

5. Numerical Experiments. This section compares the proposed QGMRES with
the classical GMRES and the block GMRES (blkGMRES) in [9] for quaternion lin-
ear systems. All experiments were performed by MATLAB (R2016a) on a personal
computer with an Intel Core 64 × 4Core i5-3470 CPU @ 3.20 GHz/8.00 GB.

A three-dimensional signal can be denoted by a quaternion function of time,
x(t) = xr(t)i + xg(t)j + xb(t)k, where xr(t), xg(t), and xb(t) are real functions (for
example, they refer to the red, green, and blue channels, respectively). We are in-
terested in determining quaternion filters {w(s)}ns=0, where w(s) = w(s)0+w(s)ri+
w(s)gj + w(s)bk on the input signal x(t) = xr(t)i + xg(t)j + xb(t)k such that the
filtered output can match with the target signal y(t) = yr(t)i+yg(t)j+yb(t)k. More
precisely, we have

(5.1) y(t) =

n∑
s=0

x(t− s) ∗w(s).

Let

X =


x(t) x(t− 1) x(t− 2) · · · x(t− n)

x(t+ 1) x(t) x(t− 1) · · · x(t− n+ 1)
...

...
...

. . .
...

x(t+m) x(t+m− 1) x(t+m− 2) · · · x(t− n+m)

 ,(5.2a)

w =
[

w(0) w(1) w(2) · · · w(n)
]T
,(5.2b)

y =
[

y(t) y(t+ 1) y(t+ 2) · · · y(t+m)
]T
.(5.2c)

Then the process (5.1) can be rewritten as

(5.3) X ∗w = y.

Let X = X0 + X1i + X2j + X3k ∈ QN×N , y = y0 + y1i + y2j + y3k ∈ QN ,
and w = w0 + w1i + w2j + w3k ∈ QN . QGMRES is directly applied to solve the
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N × N quaternion linear systems (5.3); GMRES is utilized to solve the 4N × 4N
real counterpart,

(5.4) R(X )
[
wT0 wT1 wT2 wT3

]T
=
[
yT0 yT1 yT2 yT3

]T
;

and blkGMRES is applied to solve the following 4N × 4N real linear systems with
multiple right-hand sides:

(5.5) X̃w̃ = ỹ,

where X̃ = [R(X ij)] ∈ R4n×4n, w̃ = [R(wi)] ∈ R4n×4, and ỹ = [R(yi)] ∈ R4n×4 are
block matrices with each block of size 4-by-4, defined similarly by (3.23). For the
above three methods, the relative residual error is defined by

Residual = ‖X ∗w − y‖2/‖y‖2.

The stopping criteria of all these iterative methods are that the relative residual
error is less than tol = 1.0e-6 and the maximum number of iterations is the number
of unknowns.

Example 5.1. The Lorenz attractor is a three-dimensional nonlinear system used
originally to model atmospheric turbulence [18]. Mathematically, the Lorenz system
can be expressed as a system of coupled differential equations

(5.6)
∂x

∂t
= α(y − x),

∂y

∂t
= x(ρ− z)− y, ∂z

∂t
= xy − βz,

where α, β, ρ > 0. For the chaotic behavior of Lorenz attractor, the parameters
were selected as α = 10, β = 8/3, ρ = 28. The coupled differential equations (5.6)
are solved by the MATLAB order ODE45(f(t, [x, y, z]), [0, T ], [1, 1, 1]), where T > 0.

In this example, we consider

y(t) = yr(t)i + yg(t)j + yb(t)k

where yr(t), yg(t) and yb(t) are the solutions of the Lorenz attractor. And the input

x(t) = yr(t− 1)i + yg(t− 1)j + yb(t− 1)k + n(t),

where n(t) is a random noise. The quaternion linear systems is built as in (5.3)
with (5.2).

The numerical results of applying GMRES, blkGMRES, and QGMRES to solve
(5.3) are listed in Table 1. We can see from the table that QGMRES converges in
many fewer iterations and costs less CPU time than GMRES, while their residual
errors are comparable with each other. The convergence curves are shown in Figure
2, which indicates that QGMRES stops earlier than GMRES. QGMRES preserves
Hessenberg structure in each quaternion component. GMRES preserves Hessenberg
structure in expanded real representation. However, the storage size of QGMRES
is lower than that of GMRES. To solve the HQLS problem (4.7), we only need
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N − 1 generalized quaternion Givens rotations and solve an N -dimensional upper
triangular quaternion linear systems. To solve the corresponding real Hessenberg
least-squares problem, we need 4N − 1 real Givens rotations and to solve a 4N -
dimensional real triangular linear systems.

Both blkGMRES and QGMRES are structure preserving. blkGMRES computes
the block upper Hessenberg matrix based on 4-by-4 block matrices via ∗-algebra,
while QGMRES computes the upper Hessenberg matrix based on four components
of quaternion numbers. We observe in Table 1 and Figures 2 and 3 their iteration
numbers are almost the same, but the computational time required by QGMRES is
lower than that by blkGMRES.

Table 1
Numerical results of GMRES, blkGMRES and QGMRES.

N Method Dimension Iteration CPU time Residual

141
GMRES 564 199 6.0743 7.3936e-07

blkGMRES 564 88 7.3898 8.8265e-07
QGMRES 141 88 3.1740 8.9152e-07

213
GMRES 852 488 121.0523 8.7783e-07

blkGMRES 852 165 66.2665 6.0925e-07
QGMRES 213 164 22.7382 7.7894e-07

333
GMRES 1332 908 770.0953 8.7061e-07

blkGMRES 1332 272 458.8207 6.8805e-07
QGMRES 333 272 82.9526 7.8674e-07

425
GMRES 1700 1096 1.9022e+03 8.8433e-07

blkGMRES 1700 366 1.4368e+03 8.4987e-07
QGMRES 425 365 0.2053e+03 9.5885e-07

Example 5.2. In this example, we consider the color image pixel prediction prob-
lem. Let A = A1i+A2j+A3k ∈ QN1×N2 denote a color image, where A1, A2, A3 ∈
RN1×N2 represent the red, green, and blue channels. And let A be patterned into
k1 × k2 patches of size n × n say, {Aij ∈ Qn×n|i = 1, · · · , k1, j = 1, · · · , k2}. By
concatenating the columns of each patch Aij, we obtain an n2-dimensional quater-
nion vector. Each pixel value in the formed vector is predicted by its previous pixel
values with a random noise via solving the quaternion linear system in (5.1).

The testing color image is shown in Figure 4(a) whose size is 256 × 256, i.e.,
N1 = N2 = 256. We test four cases of partitioning: k1 = k2 = 8, k1 = k2 =
16, k1 = 256, k2 = 2 and k1 = 2, k2 = 256. The numerical results are listed in
Table 2, in which the notation has the following meanings: “Numblk” denotes the
number of patches, “Dimension” denotes the dimension of the linear quaternion
systems to predict one patch, and “Iteration,” “CPU time,” and “Residual” denote
the average iteration, CPU time and relative residual error required by QGMRES
or GMRES applied on one patch, respectively. In Figure 4, we show the visual
comparison in the case that k1 = k2 = 8. Figures 4(a)-(b) are the original and
observed color images, respectively. Figures 4(c)-(e) are the predicted color images
by GMRES, blkGMRES, and QGMRES, respectively. We can see that the QGMRES
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Figure 2. The relative residual errors of GMRES, blkGMRES and QGMRES in four cases:
N = 141, 213, 333, and 425.

method converges in fewer iterations than the GMRES method. The residual errors
of QGMRES are much smaller than those of GMRES. Again, blkGMRES converges
in almost the same number of iterations as QGMRES, but costs more in CPU time
than QGMRES. The predicted color image by QGMRES is visually the same as the
original one and is comparable with those computed by GMRES and blkGMRES.

6. Conclusion. In this paper, we proposed the QGMRES to solve general quater-
nion linear systems. The main contributions are listed as follows.

• The quaternion Arnoldi method is first proposed and its basic theory is well
developed with overcoming the multiplicative noncommutativity of quater-
nions. A new structure preserving method is presented to implement the
quaternion Arnoldi procedure.
• QGMRES is newly presented for solving the general and large-scale quater-

nion linear systems, as well as the convergence analysis. The upper HQLS
problem is solved by a new efficient solver.
• QGMRES is successfully applied to the three-dimensional signal filtering and
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Figure 3. The CPU times cost by the Arnoldi procedures of blkGMRES and QGMRES at the
mth iteration in four cases: N = 141, 213, 333, and 425.

Table 2
Color image prediction: GMRES vs. QGMRES

SizeBlk (k1, k2) NumBlk Method Dimension Iteration CPU time Residual

(8,8) 1024
GMRES 256 173 3.3523 4.7726e-07

blkGMRES 256 63 2.1578 5.1705e-08
QGMRES 64 63 1.3992 5.8309e-08

(16,16) 256
GMRES 1024 804 561.3812 8.1980e-07

blkGMRES 1024 256 266.8387 5.2922e-07
QGMRES 256 255 85.5188 1.5324e-07

(256,2) 128
GMRES 2048 1892 1.1411e+04 7.8323e-07

blkGMRES 2048 511 5.1404e+03 6.4565e-07
QGMRES 512 511 0.9451e+03 1.3042e-07

(2,256) 128
GMRES 2048 1890 1.1790e+04 8.2625e-07

blkGMRES 2048 512 5.8392e+03 5.7220e-08
QGMRES 512 511 0.9488e+03 1.6005e-08
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(a) Original (b) Observed

(c) GMRES (d) blkGMRES (e) QGMRES

Figure 4. The visual comparison of color image prediction: (a)-(b) the orginal and observed
color images; (c)-(e) the predicted color images by GMRES, blkGMRES and QGMRES.

color image processing.
In the future, we will study the Householder version of the Arnoldi method, the
restarted QGMRES, and the preconditioned QGMRES for other applications.
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