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Abstract

We investigate global strong solution to a 3-dimensional parabolic–hyperbolic system arising from the
Keller–Segel model. We establish the global well-posedness and asymptotic behavior in the energy func-
tional setting. Precisely speaking, if the initial difference between cell density and its mean is small in L2,
and the ratio of the initial gradient of the chemical concentration and the initial chemical concentration is
also small in H 1, then they remain to be small in L2 × H 1 for all time. Moreover, if the mean value of the
initial cell density is smaller than some constant, then the cell density approaches its initial mean and the
chemical concentration decays exponentially to zero as t goes to infinity. The proof relies on an application
of Fourier analysis to a linearized parabolic–hyperbolic system and the smoothing effect of the cell density
and the damping effect of the chemical concentration.
© 2014 Elsevier Inc. All rights reserved.
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1. Introduction

In this paper, we study the following three-dimensional (3D) chemotaxis model
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∂tu = �u + ∇ · (u∇ lnv),

∂tv = uv − μv
(1.1)

where (t, x) ∈ (0,∞) × R3, u(t, x) and v(t, x) denote the cell density and the chemical concen-
tration respectively, and μ is a constant. The initial data is

(u, v)(0, x) = (u0, v0)(x) (1.2)

for x ∈ R3. System (1.1) was proposed by Othmer and Stevens [26] to describe the chemotactic
movement of particles where the chemicals are non-diffusible and can modify the local envi-
ronment for succeeding passages. For example, myxobacteria produce slime over which their
cohorts can move more readily and ants can follow trails left by predecessors [8]. One direct
application of (1.1) is to model haptotaxis where cells move towards an increasing concentration
of immobilized signals such as surface or matrix-bound adhesive molecules.

For the sake of simplicity, we set w = μt + lnv. Therefore we get from (1.1) that{
∂tu = �u + ∇ · (u∇w),

∂tw = u
(1.3)

where (t, x) ∈ (0,∞) × R3. (1.3) is supplemented with initial data (u0,w0)(x) = (u0, lnv0) for
all x ∈ R3.

It is worth mentioning that (1.3) was studied in [30] for the 1-dimensional case and was
extended to multidimensional cases in [20,21]. It was studied in [26] and a comprehensive qual-
itative and numerical analysis were provided. We refer readers to Refs. [3,5,6,8,10–13,18–20,
22–25,27,28,30–33] for more discussions in this direction. Recently, in [20], the local and global
existence of the classical solution to (1.3) in 3-dimension were studied when1

(u0 − ū,∇w0) ∈ H
5
2 + × H

5
2 +.

Here Hs is the Bessel potential space

Hs := {
f ∈ S ′(R3); ∥∥(1 − �)s/2f

∥∥
L2 < ∞}

(1.4)

Throughout this paper, we shall omit the space domain R3 for the sake of simplicity such that
X(R3) is denoted by X for any given Banach space X. If the space dimension is not 3, then we
will indicate the space domain.

Later on, Hao [9] studied existence and uniqueness of global mild solutions for initial data
close to some constant state in critical Besov space with minimal regularity. The proof was in the
Chemin–Lerner space framework (see e.g. [3,7]).

The Cauchy problem of (1.3) is invariant under the following scaling transformations:

(u,w,u0,w0) −→ (uλ,wλ,u0λ,w0λ),

where uλ(t, x) = λ2u(λ2t, λx), wλ(t, x) = w(λ2t, λx), u0λ(x) = λ2u0(λx) and w0λ(x) =
w0(λx). The idea of using an invariant functional setting was originated from many works (see

1 ū denotes the mean value of u0 and s = 5
2 + stands for s > 5

2 . Similar conventions are applied.
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e.g. [2]). In this paper, we shall also employ the invariant argument. As a consequence, we ob-

serve that the critical Sobolev space for (u0,w0) is Ḣ− 1
2 × Ḣ

3
2 and the subcritical Sobolev space

is Ḣ− 1
2 + × Ḣ

3
2 + which is also called the Riesz potential space

Ḣ s := {
f ∈ S ′(R3); ∥∥Λsf

∥∥
L2 < ∞}

. (1.5)

In the critical case, it seems difficult to prove the global existence of the solution to (1.3) with

(u0,w0) ∈ Ḣ− 1
2 × Ḣ

3
2 due to the invalidity of Ḣ

3
2 ↪→ L∞. Thus a relatively smaller initial data

space: the hybrid Besov space Ḃ
− 1

2
2,1 × (Ḃ

1
2

2,1 ∩ Ḃ
3
2

2,1) was used in [9].

In the subcritical case, it is easy to check that the L2 function (1 + |x|2)−1 in 3-dimension

neither belongs to Ḣ− 1
2 (R3) nor belongs to Ḃ

− 1
2

2,1 . Thus (u0,∇w0) ∈ L2 × H 1 cannot be treated
directly by applying the arguments for the critical case in [9]. Although we believe that the
Chemin–Lerner space framework can be modified to handle the subcritical case, we shall em-
ploy a new approach to study (1.3) for initial data (u0,∇w0) ∈ L2(R3) × H 1(R3) since the
Fourier multiplier theory provides us with another option without using dyadic decompositions.
Meanwhile, by recalling the well known weak solution theory for the heat equation, we observe
that finding a unique solution

(u,∇w) ∈ (
C

([0,∞);L2) ∩ L2(0,∞; Ḣ 1)) × C
([0,∞);H 1)

is also important. Following the similar arguments of [20], one can lower down the regular index
s of the initial data space Hs × Hs for (u0,∇w0). However, L2 × H 1 seems to be unreachable.
Therefore our first goal is to apply the Fourier analysis tools to prove the well-posedness of (1.3)
in L2 × H 1.

Our next goal is to establish the well-posedness of (1.3) with initial value (u0,∇w0) ∈ H 2 ×
H 1. Precisely speaking, we will prove that the Cauchy problem (1.1)–(1.2) has a unique solution(

u − ū,∇(
(μ − ū)t + lnv

)) ∈ C
([0,∞);H 2) × C

([0,∞);H 1)
provided that (u0,∇ lnv0) is close enough to the equilibrium state (ū,0) in H 2 × H 1, where ū

is defined in (1.6). From the system (1.3), it is natural to assume that the second derivatives of u

and w exist almost everywhere, although certain higher derivatives might not exist.
In the four-dimensional (4D) case, scaling argument suggests that L2(R4) × H 1(R4) is the

critical initial data space for (u0,∇w0). Therefore, an interesting problem is whether (1.3) has a
unique solution even locally in time for (u0,∇w0) ∈ L2(R4) × H 1(R4).

We now define the mean value of u on R3 as

ū = lim
R→∞

1

|BR|
∫
BR

u0(x)dx, (1.6)

where BR ⊂ R3 is a space ball centered at the origin with radius R > 0 and u0 is the initial cell
density. Noticing that the mean value of u on R3 is a conserved quantity due to its conservative
nature, hence ū is well defined. Let ū = 1 for the sake of simplicity. By changing variables in
(1.1): p = u − ū and h = (μ − ū)t + lnv, we get
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∂tp = �p + �h + ∇ · (p∇h),

∂th = p

where (t, x) ∈ (0,∞) × R3. It is easy to check that for any positive constant c, if (p,h) is a
solution to the above system, then (p,h + ln c) is also a solution. Equivalently, if (u, v) is a
solution to (1.1), then (u, cv) is also a solution. As a consequence, it is natural to choose ∇h as
an unknown function. Let Λ = √−�, q = −Λh and G = Λ−1∇ · (p∇Λ−1q). Then we get

{
∂tp = �p + Λq − ΛG,

∂tq = −Λp
(1.7)

where (t, x) ∈ (0,∞) × R3. (1.7) is supplemented with initial data

(p, q)(0, x) = (p0, q0)(x), p0 = u0 − ū (1.8)

for x ∈ R3, where p0 = u0 − ū and q0 = −Λ lnv0.
Our proof of the global well-posedness of (1.7) with initial data (p0, q0) ∈ Hk × H 1

(k = 0,2) is based on a combination of the Fourier transform and estimates of the eigenval-
ues of the corresponding characteristic matrix (see (3.1)–(3.13)). The different decay prop-
erties of the eigenvalues of the characteristic matrix enable us to take advantages of the
smoothing properties of the high frequency piece2 of p, i.e., p ∈ L1(0,∞; Ḣ 7/4

ψ ) instead
of that of q since the high frequency piece of q does not have spatial smoothing effect
(see (1.12)). The use of L1(0,∞; Ḣ 7/4

ψ ) is the noval point of this paper. The main diffi-
culty is to estimate ‖p∇q‖L1(0,∞;L2), which forces us to use frequency decomposition and
smoothing effects (see Lemma 3.2 below). Once ‖p∇q‖L1(0,∞;L2) being estimated, the de-
sired result follows from a standard fixed point argument. As for the decay property of v

in (1.1), we apply the limiting case of the Sobolev inequality in BMO (cf. [15]) to v =
ce(ū−μ)t e−Λ−1q to obtain both lower and upper bounds of its L∞ norm which are stated in
(1.20)–(1.21).

To prove our main results in Theorems 1.1 and 1.2, we shall apply the Fourier multiplier theory
and the smoothing properties of the parabolic–hyperbolic coupled system (see (3.11)–(3.13)). In
particular, from (3.6), (3.11) and m1(t, ξ) for |ξ | > 2 in (M), we observe that for |ξ | > 4,

m1(t, ξ) = e− t (1+Ξ)|ξ |2
2

2Ξ
Ξ+1

− e− 2t
1+Ξ

Ξ(Ξ+1)|ξ |2
2

with Ξ =
√

1 − 4

|ξ |2 ∈
(√

3

2
,1

)
. (1.9)

To explore the smoothing effect, we need to study the operator ∂k
t ∂αm1(t,D) with symbol

∂k
t ξαm1(t, ξ) = − (1 + Ξ)k+1

(−2)k+1Ξ
|ξ |2kξαe− t (1+Ξ)|ξ |2

2 + (−2)k+1

Ξ(Ξ + 1)k+1
ξα|ξ |−2e− 2t

1+Ξ , (1.10)

2 Definitions of the low, medium and high frequency pieces and Ḣ
7/4
ψ are given by (1.15) and (1.17), respectively.
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ξα = ξ
α1
1 ξ

α2
2 ξ

α3
3 , α = (α1, α2, α3) ∈ N3, k ∈ N and |α| = α1 +α2 +α3 ≤ 2. Indeed, for any t > 0,

|ξ | > 4 and p0 ∈ L2(R3), from (1.9)–(1.10) one gets∥∥∂k
t ∂αm1(t,D)p0

∥∥
L2 ≤ (

C1(k)t−
|α|
2 −k + C2(k)e−t

)‖p0‖L2 . (1.11)

However, by following the similar arguments, for any t > 0, |ξ | > 4 and q0 ∈ H 1(R3), one can
only get from (3.6), (M) and (3.11) that∥∥∂k

t m2(t,D)q0
∥∥

H 1 ≤ C3(k)‖q0‖H 1 (1.12)

where no smoothing effect exists for spatial variable. For the low frequency piece, i.e. |ξ | ≤ C

(C is some fixed positive constant), since m1(t,D) and m2(t,D)(−�)− 1
2 behave similarly to

et� in the Sobolev space settings, we omit the detail smoothing argument. It is worth pointing
out that the linear part of (1.7) is also known as the weak dissipative structure, see for instance
[4,7,16] and the references therein.

Before stating our main results, let us define the partition of unit. Let us briefly explain how
it may be built in R3. Let S(R3) be the Schwarz class and (η,ϕ,ψ) be three smooth radially
symmetric functions with range in [0,1] such that

suppψ ⊂ {
ξ ∈ R3; |ξ | > 24}, suppϕ ⊂ {

ξ ∈ R3; 1 < |ξ | < 25}, (1.13)

suppη ⊂ {
ξ ∈ R3; |ξ | < 2

}
, η(ξ) + ϕ(ξ) + ψ(ξ) = 1, ∀ξ ∈ R3. (1.14)

For f ∈ S ′(R3), we define the low, medium and high frequency operators as follows3:

f l = η(D)f, f m = ϕ(D)f, f h = ψ(D)f, η(D)ψ(D)f ≡ 0 (1.15)

with η(ξ),ϕ(ξ) and ψ(ξ) being the symbols of η(D),ϕ(D) and ψ(D), respectively.
Throughout this paper, Ff and f̂ stand for Fourier transform of f with respect to space

variables and F−1 stands for the corresponding inverse Fourier transform. For any s ≥ 0 and
any function f , we shall define the fractional Riesz potential Λs and Bessel potential 〈Λ〉s :=
(1 − �)

s
2 by

Λ̂sf (ξ) = |ξ |s f̂ (ξ) and 〈̂Λ〉sf (ξ) = 〈ξ 〉s f̂ (ξ) = (
1 + |ξ |2) s

2 f̂ (ξ) (1.16)

respectively.
Recall from (1.4)–(1.5) and the definitions of Λ and 〈Λ〉 that for any s > 0, it holds that

Hs = Ḣ s ∩ L2. For s ∈ R, we define

Ḣ s
ψ = {

f ∈ S ′(R3); ‖f ‖Ḣ s
ψ

= ∥∥Λsψ(D)f
∥∥

L2 = ∥∥Λsf h
∥∥

L2 < ∞}
(1.17)

where Ḣ s
ψ itself is not a Banach space since by using (1.15) one can prove that for any g ∈ S(R3)

satisfying supp ĝ ⊂ {ξ ∈ R3; |ξ | < 24} and f ∈ Ḣ s
ψ , it holds that ‖f ‖Ḣ s

ψ
= ‖f + g‖Ḣ s

ψ
. Hence

3 f l = η(D)f =F−1(η(ξ)f̂ (ξ)) and similar conventions are used in this paper.
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we need to introduce another Banach space Z such that Z ∩ Ḣ s
ψ is a Banach space. We denote

C([0,∞);X(R3)) the Banach space with norm ‖ · ‖L∞
t X , where we omit the space domain for

the sake of simplicity if there is no confusion. A � B represents A ≤ CB for some positive
constant C which dependence on various parameters is clear. A ∼ B iff A � B � A. For any
1 ≤ ρ, r ≤ ∞, we denote Lρ(0,∞) and Lρ((0,∞);Lr) by L

ρ
t and L

ρ
t Lr , respectively.

We state our main results as follows.

Theorem 1.1. There exist C,ε0 > 0 so that if ‖(p0, q0)‖L2×H 1 ≤ ε0, then Cauchy problem
(1.7)–(1.8) has a unique global solution (p, q) ∈ C([0,∞);L2) × C([0,∞);H 1) satisfying∥∥(p, q)

∥∥
L∞

t L2×L∞
t H 1 + ∥∥(∇p,∇q)

∥∥
L2

t L
2×L2

t L
2 + ‖p‖

L1
t Ḣ

7/4
ψ

≤ Cε0

for all t > 0.

Theorem 1.2. There exist constants C,ε0 > 0 so that if ‖(p0, q0)‖H 2×H 1 ≤ ε0, then Cauchy
problem (1.7)–(1.8) has a unique global solution (p, q) ∈ C([0,∞);H 2) × C([0,∞);H 1).
Moreover, for any t > 0,∥∥(p, q)

∥∥
L∞

t H 2×L∞
t H 1 + sup

t>0
(1 + t)

1
2
∥∥(∇p,∇q)

∥∥
L2×L2 + sup

t>0
(1 + t)

7
8
∥∥Λ

7
4 p

∥∥
L2 ≤ Cε0.

Recall that if (u, v) solves (1.1), then for any positive constant c, (u, cv) also solves (1.1).
Hence from the unique solution (p, q) of (1.7), we get a sequence of solutions (u, cv) such

that v = ce(ū−μ)t e−Λ−1q . From embedding theorems4 Ḣ
5
4 ↪→ L12, Ḣ

1
2 ↪→ L3 ↪→ BMO−1 and

Lemma 2.5 below, we get v = ce(ū−μ)t e−Λ−1q and∥∥Λ−1q
∥∥

L∞ ≤ C
(
1 + ∥∥Λ−1q

∥∥
BMO

(
1 + max

{
0, ln

∥∥Λ−1q
∥∥

W
3
4 ,12

}))
≤ C

(
1 + ‖q‖BMO−1

(
1 + max

{
0, ln

(∥∥Λ−1q
∥∥

L12 + ∥∥Λ− 1
4 q

∥∥
L12

)}))
≤ C

(
1 + ‖q‖

Ḣ
1
2

(
1 + max

{
0, ln

(‖q‖
Ḣ

1
4

+ ‖q‖Ḣ 1

)}))
≤ C

(
1 + ‖∇q‖

1
2
L2‖q‖

1
2
L2

(
1 + max

{
0, ln‖q‖H 1

}))
. (1.18)

In Theorem 1.2, we choose ε0 such that Cε0 ≤ 1. Then from (1.18), we obtain that

∥∥Λ−1q
∥∥

L∞ ≤ C
(
1 + ‖∇q‖

1
2
L2‖q‖

1
2
L2

) ≤ C
(
1 + ‖∇q‖

1
2
L2

)
. (1.19)

Applying (1.19) to v = ce(ū−μ)t e−Λ−1q , we get

1

c
‖v‖L∞ = e(ū−μ)t

∥∥e−Λ−1q
∥∥

L∞ ≤ e(ū−μ)t e‖Λ−1q‖L∞ ≤ e(ū−μ)t e
C(1+‖∇q‖

1
2
L2 )

, (1.20)

1

c
‖v‖L∞ = e(ū−μ)t

∥∥e−Λ−1q
∥∥

L∞ ≥ e(ū−μ)t e−‖Λ−1q‖L∞ ≥ e(ū−μ)t e
−C(1+‖∇q‖

1
2
L2 )

. (1.21)

4 We refer the readers to [29,14] to see the definitions of BMO and BMO−1 as well as Ln ↪→ BMO−1.
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From Theorem 1.2 and (1.20)–(1.21), we have the following results on the asymptotic be-
havior of solutions. In particular, if the mean value of the initial cell density is smaller than a
constant μ, then the cell density approaches to its initial mean and the chemical concentration
decays exponentially to zero as t goes to infinity.

Corollary 1.3. If (u0 − ū,∇ lnv0) ∈ H 2(R3) × H 1(R3) and there exists constant ε0 > 0 such
that ‖(u0 − ū,∇ lnv0)‖H 2×H 1 ≤ ε0, then Cauchy problem (1.1)–(1.2) has a global solution (u, v)

satisfying that for all t > 0 ∥∥(u − ū,∇lnv)
∥∥

L∞
t H 2×L∞

t H 1 � ε0,

(u − ū,∇ lnv) ∈ C
([0,∞);H 2) × C

([0,∞);H 1)
and

sup
t>0

(1 + t)
1
2
∥∥(∇u,�lnv)

∥∥
L2×L2 + sup

t>0
(1 + t)

7
8
∥∥Λ

7
4 u

∥∥
L2 � ε0.

Moreover

‖u − ū‖L∞ � (1 + t)−
1
2 as t → ∞; ‖v‖L∞ ∼ e(ū−μ)t as t → ∞. (1.22)

In particular, if μ > ū, then ∥∥(u − ū, v)
∥∥

L∞ → (0,0)

as t → ∞.

Plan of the paper: In Section 2 we prove several preliminaries lemmas, and in Section 3 we prove
Theorems 1.1 and 1.2 and Corollary 1.3.

2. Preliminary lemmas

In this section, we always assume that dimension n = 3. We now list several known lemmas
which will be used to prove the well-posedness of (1.7)–(1.8).

The first lemma is concerned with functions whose Fourier transforms are supported in low,
medium and high frequency areas, respectively. We note that the first two results in the first
lemma are the well-known Bernstein’s inequalities (cf. [17, Proposition 3.2, p. 24] and [1,
Lemma 2.1, p. 52]) and the last one is a direct consequence of the Sobolev embedding theo-
rem.

Lemma 2.1. If (s, a, b) ∈ [0,∞) × [1,∞]2, a ≤ b and f (x) ∈ La , then for any two positive
constants c1 and c2, there exists positive constant c such that

supp f̂ ⊂ {
ξ ∈ R3; |ξ | ≤ c2

}
,

∥∥Λsf
∥∥

Lb ≤ cc
s+n( 1

a
− 1

b
)

2 ‖f ‖La , (2.1)

supp f̂ ⊂ {
ξ ∈ R3; c1 < |ξ | < c2

}
,

c

κcs
1
‖f ‖La ≤ ∥∥Λsf

∥∥
La ≤ cκcs

2‖f ‖La , (2.2)



Author's personal copy

1318 C. Deng, T. Li / J. Differential Equations 257 (2014) 1311–1332

supp f̂ ⊂ {
ξ ∈ R3; |ξ | ≥ c1

}
, ‖f ‖La ≤ ∥∥〈Λ〉sf ∥∥

La = ‖f ‖Ws,p , (2.3)

where κ = ln c2
c1

and Ws,p is the fractional Sobolev space.

Applying Lemma 2.1 for 2 = a ≤ b ≤ ∞ and s ≥ 0 to η(D)f and ψ(D)f , we get

∥∥η(D)f
∥∥

Lb � ‖f ‖L2 and
∥∥ψ(D)f

∥∥
L2 �

∥∥Λsf
∥∥

L2 .

From (2.1)–(2.2), we have the following lemma concerning the L2 Fourier multiplier.

Lemma 2.2. If r ∈ [1,∞], v ∈ L2, m(t, ξ) ∈ Lr
t L

∞
ξ

5 and m(t,D)v = F−1m(t, ξ )̂v(ξ), then we
get

∥∥m(t,D)v
∥∥

Lr
t L

2 ≤ ‖m‖Lr
t L

∞
ξ

‖v‖L2; (2.4)

if r ∈ [2,∞], v ∈ L2, m(t, ξ)|ξ |s ∈ Lr
t L

∞
ξ and m(t,D)v =F−1m(t, ξ )̂v(ξ), then we get

∥∥m(t,D)v
∥∥

Lr
t Ḣ

s ≤ sup
ξ∈R3

(|ξ |s∥∥m(·, ξ)
∥∥

Lr
t

)‖v‖L2 . (2.5)

Proof. The proof of (2.4) follows from the classical Fourier multiplier theory and for complete-
ness, we give the proof as follows

∥∥m(t,D)v
∥∥

Lr
t L

2 = ∥∥m(t, ·)̂v(·)∥∥
Lr

t L
2
ξ
≤ ∥∥∥∥m(t, ·)∥∥

L∞
ξ

∥∥
Lr

t
‖̂v‖L2

ξ
≤ ‖m‖Lr

t L
∞
ξ

‖v‖L2 .

In order to prove (2.5), we need to use Plancherel’s equality, Minkowski’s inequality, Hölder’s
inequality and Plancherel’s equality again, i.e.,

∥∥m(t,D)v
∥∥

Lr
t Ḣ

s = ∥∥m(t, ·)| · |s v̂(·)∥∥
Lr

t L
2
ξ
�

∥∥m(t, ·)| · |s v̂(·)∥∥
L2

ξ Lr
t

≤ sup
ξ∈R3

(∥∥m(·, ξ)
∥∥

Lr
t
|ξ |s)‖̂v‖L2

ξ
.

Hence we finish the proof. �
The skill we used in proving Lemma 2.2 will be used repeatedly in the rest of the paper.

Lemma 2.3. If |m(t, ξ)| ≤ c1(
e−ct

1+|ξ |2 +e−ct |ξ |2) and |n(t, ξ)| ≤ c1e
−ct for some positive constants

c and c1, 2 ≤ ρ ≤ ∞, 1 ≤ r ≤ ρ1 ≤ ∞ and (u, v) ∈ L2
t L

2 × Lr
t L

2, then we get

5 ‖m‖r
Lr

t L
ν
ξ

= ∫ ∞
0 ‖m(t, ·)‖r

Lν(R3)
dt and similar conventions are used.
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∥∥∥∥∥
t∫

0

m(t − τ,D)u(τ)dτ

∥∥∥∥∥
L

ρ
t Ḣ

1+ 2
ρ

� ‖u‖L2
t L

2 , (2.6)

∥∥∥∥∥
t∫

0

n(t − τ,D)u(τ)dτ

∥∥∥∥∥
L

ρ1
t L2

� ‖u‖Lr
t L

2 . (2.7)

Proof. By applying the Plancherel equality, Lemma 2.2 with ‖m(t, ·)‖L∞
ξ

≤ c1e
−ct and the inte-

grability of e−ct , we see that the proof of (2.7) is quite straightforward. Thus it suffices to prove
(2.6). Since 1 + 2

ρ
∈ [0,2], by making use of the definition of the Fourier transformation and the

Fubini theorem, we get

∥∥∥∥∥
t∫

0

m(t − τ,D)u(τ)dτ

∥∥∥∥∥
L

ρ
t Ḣ

1+ 2
ρ

=
∥∥∥∥∥

t∫
0

m(t − τ, ξ)|ξ |1+ 2
ρ û(τ )dτ

∥∥∥∥∥
L

ρ
t L2

ξ

�
∥∥∥∥∥

t∫
0

m(t − τ, ξ)|ξ |1+ 2
ρ û(τ )dτ

∥∥∥∥∥
L2

ξ L
ρ
t

�
∥∥∥∥∥

t∫
0

(
e−c(t−τ)|ξ |2 |ξ |1+ 2

ρ + e−c(t−τ)
)∣∣̂u(τ)

∣∣dτ

∥∥∥∥∥
L2

ξ L
ρ
t

�
∥∥‖û‖L2

t

∥∥
L2

ξ
∼ ‖û‖L2

t L
2
ξ
� ‖u‖L2

t L
2 ,

where in the second, fourth and fifth inequalities we have used Minkowski, Young’s inequality,
Fubini’s theorem and Plancherel’s equality. Hence we finish the proof. �

The next lemma is about the Picard contraction argument (cf. [2]) which will be used to prove
the well-posedness of (1.7) with initial data (p0, q0) = (x10, x20) ∈ X10 × X20 = L2 × H 1 or
H 2 × H 1.

Lemma 2.4. Let (X10 × X20,‖ · ‖X10 + ‖ · ‖X20) and (X1 × X2,‖ · ‖X1 + ‖ · ‖X2) be abstract
Banach product spaces. Let L1 : X10 × X20 → X1, L2 : X10 × X20 → X2, B1 : X1 × X2 → X1
and B2 : X1 ×X2 → X2 be two linear and two bilinear operators such that if for any (x10, x20) ∈
X10 × X20, (x1, x2) ∈ X1 × X2, c > 0 and i = 1,2,

∥∥Li(x10, x20)
∥∥

Xi
≤ c

(‖x10‖X10 + ‖x20‖X20

)
and

∥∥Bi(x1, x2)
∥∥

Xi
≤ c‖x1‖X1‖x2‖X2,

then for any (x10, x20) ∈ X10 × X20 with ‖(x10, x20)‖X10×X20 < 1
16c

, the following system

(x1, x2) = (
L1(x10, x20),L2(x10, x20)

) + (
B1(x1, x2),B2(x1, x2)

)
has a solution (x1, x2) in X1 × X2. In particular, the solution satisfying
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∥∥(x1, x2)
∥∥

X1×X2
≤ 4

∥∥(x10, x20)
∥∥

X10×X20

is the only one such that ‖(x1, x2)‖X1×X2 < 1
4c

.

The last lemma is the limiting case of the Sobolev inequality in BMO , see [15].

Lemma 2.5. If n = 3 and s > 1
4 , then there exists a constant C depending on s so that

‖f ‖L∞ ≤ C
(
1 + ‖f ‖BMO

(
1 + max

{
0, ln‖f ‖Ws,12

}))
for all f ∈ Ws,12 and ‖f ‖Ws,12 = ‖〈Λ〉sf ‖L12 .

3. Proof of the main results

In this section, we shall use the Fourier analysis tools to study the well-posedness of (1.7)
with initial data in the Sobolev spaces. For the sake of simplicity, we also assume that n = 3
throughout this section.

3.1. Linearization of (1.7) and the corresponding integral equations

In this subsection, we first study the linearized system of (1.7) around (0,0)

d

dt

(
p

q

)
=

(−Λ2 Λ

−Λ 0

)(
p

q

)
. (3.1)

Taking Fourier transform of (3.1) with respect to the space variable yields

d

dt

(
p̂

q̂

)
= L(ξ)

(
p̂

q̂

)
with L(ξ) =

(−|ξ |2 |ξ |
−|ξ | 0

)
.

The characteristic polynomial of L(ξ) is X2 + |ξ |2X + |ξ |2. According to the size of |ξ |, we
have the following three subcases:

• If |ξ | > 2, then the characteristic polynomial possesses two distinct real roots: λ+ =
|ξ |2

2 (−1 + Ξ) and λ− = |ξ |2
2 (−1 − Ξ) with Ξ :=

√
1 − 4

|ξ |2 . Since λ+ �= λ−, the matrix

L(ξ) is diagonalizable. After computing the associated eigenspaces, we find that

p̂ =
(

etλ− + etλ+

2
+ etλ− − etλ+

2Ξ

)
p̂0 + etλ+ − etλ−

Ξ

q̂0

|ξ | , (3.2)

q̂ = etλ− − etλ+

Ξ

p̂0

|ξ | +
(

etλ− + etλ+

2
+ etλ+ − etλ−

2Ξ

)
q̂0, (3.3)

where, for simplicity, we denote etλ++etλ−
2 and etλ+−etλ−

2Ξ
by Ω1,t (ξ) and Ω2,t (ξ), respec-

tively. Moreover, if there is no confusion, we will denote Ω1,t (ξ) and Ω2,t (ξ) by Ω1,t and
Ω2,t , respectively.
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• If |ξ | < 2, then the characteristic polynomial has two distinct complex roots: λ+ = −|ξ |2
2 −

i
Θ|ξ |2

2 and λ− = −|ξ |2
2 + i

Θ|ξ |2
2 with Θ :=

√
−1 + 4

|ξ |2 . Noticing that λ+ �= λ−, hence the

matrix L(ξ) is also diagonalizable. After computing the associated eigenspaces, we get

p̂ =
(

etλ− + etλ+

2
+ etλ− − etλ+

−2iΘ

)
p̂0 + etλ+ − etλ−

−iΘ

q̂0

|ξ | , (3.4)

q̂ = etλ− − etλ+

−iΘ

p̂0

|ξ | +
(

etλ− + etλ+

2
+ etλ+ − etλ−

−2iΘ

)
q̂0, (3.5)

where, for simplicity, we denote etλ++etλ−
2 and etλ+−etλ−

−2iΘ
by Ω3,t and Ω4,t , respectively.

• If |ξ | = 2, then L(ξ) is not diagonalizable. However, this case can be defined via lim|ξ |→2+
and lim|ξ |→2− since the two limits exist and coincide.

We divide the analysis of the multipliers in (3.2)–(3.5) into the following five subcases:

If |ξ | > 4, then we obtain that
√

3
2 < Ξ < 1, λ+ = − 2

1+Ξ
, λ− = − (1+Ξ)|ξ |2

2 , Ω2,t =
etλ+−etλ−

2Ξ
= e

− 2t
1+Ξ (1−e−t |ξ |2Ξ )

2Ξ
and Ω1,t − Ω2,t = etλ−+etλ+

2 + etλ−−etλ+
2Ξ

= e
− t (1+Ξ)|ξ |2

2
2Ξ

Ξ+1
−

e
− 2t

1+Ξ

Ξ(Ξ+1)|ξ |2
2

which gives

|Ω1,t − Ω2,t | ≤ 2e− t |ξ |2
2 + 3e−t 1

1 + |ξ |2 and |Ω2,t | ≤ e−t . (3.6)

If 2 < |ξ | ≤ 4, then we have 0 < Ξ ≤
√

3
2 , λ+ = − 2

1+Ξ
, λ− = − (1+Ξ)|ξ |2

2 and Ω1,t =
etλ−+etλ+

2 = e
− t (1+Ξ)|ξ |2

2 +e
− 2t

1+Ξ

2 . Applying 1 − e−|x| ≤ |x| to Ω2,t and noticing that 4 <

|ξ |2 ≤ 16, it holds

|Ω1,t | ≤ e−t and |Ω2,t | ≤ 16e− t
2 . (3.7)

If 1 ≤ |ξ | < 2, then we obtain that 0 < Θ|ξ | ≤ √
3, λ± = −|ξ |2

2 ∓ i
Θ|ξ |2

2 , Ω3,t = etλ++etλ−
2 =

e− t |ξ |2
2 cos Θ|ξ |2t

2 and Ω4,t

|ξ | = etλ+−etλ−
−2iΘ|ξ | = 1

2e− t |ξ |2
2

sin Θ|ξ |2t
2

Θ|ξ |
2

= 1
2e− t |ξ |2

2
sin Θ|ξ |2t

2
Θ|ξ |2t

2

t |ξ |. Applying

| sinx| ≤ |x|, | cosx| ≤ 1 to Ω3,t and Ω4,t , we get

|Ω4,t |
|ξ | ≤ 4e− t

4 , |Ω4,t | ≤ 8e− t
4 and |Ω3,t | ≤ e− t

2 . (3.8)

If |ξ | < 1, then we can prove that
√

3 < Θ|ξ | < 2, λ± = −|ξ |2
2 ∓ i

Θ|ξ |2
2 ,

|Ω4,t |
|ξ | ≤ e− t |ξ |2

2 , |Ω4,t | ≤ 4e− t |ξ |2
4 and |Ω3,t | ≤ 2e− t |ξ |2

2 . (3.9)
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If |ξ | → 2, then we get lim|ξ |→2+ Ξ = lim|ξ |→2− Θ = 0, lim|ξ |→2 λ+ = lim|ξ |→2 λ− = −2
and

lim
|ξ |→2+ Ω1,t = lim

|ξ |→2− Ω3,t = e−2t , lim
|ξ |→2+ Ω2,t = lim

|ξ |→2− Ω4,t = 2te−2t . (3.10)

For simplicity, we define the following two multipliers:

m1(t, ξ) =
⎧⎨⎩

Ω1,t − Ω2,t if |ξ | > 2,

e−2t − 2te−2t if |ξ | = 2,

Ω3,t − Ω4,t if |ξ | < 2,

m2(t, ξ) =
⎧⎨⎩

Ω2,t if |ξ | > 2,

2te−2t if |ξ | = 2,

Ω4,t if |ξ | < 2.

(M)

Applying (3.6)–(3.10) to m1(t, ξ) and m2(t, ξ), we observe that m1(t, ξ) and m2(t, ξ) are not
only radial but also continuous with respect to frequency variable ξ . Moreover, there exist con-
stants c and c1 such that if |ξ | > 24, then we get

∣∣m1(t, ξ)
∣∣ ≤ c1

(
e−ct |ξ |2 + e−ct 1

1 + |ξ |2
)

and
∣∣m2(t, ξ)

∣∣ ≤ c1e
−ct ; (3.11)

if 1 < |ξ | < 25, then we get ∣∣m1(t, ξ)
∣∣ + ∣∣m2(t, ξ)

∣∣ ≤ c1e
−ct ; (3.12)

else if |ξ | < 2, then we get

∣∣m1(t, ξ)
∣∣ + ∣∣m2(t, ξ)

∣∣ + |m2(t, ξ)|
|ξ | ≤ c1e

−ct |ξ |2 . (3.13)

Integral equations. We rewrite (1.7) with initial data (p0, q0) into the following equivalent
integral equations

p = m1(t,D)p0 + 2m2(t,D)Λ−1q0 −
t∫

0

m1(t − τ,D)ΛG(τ)dτ, (3.14)

q = −2m2(t,D)Λ−1p0 + (
m1(t,D) + 2m2(t,D)

)
q0 − 2

t∫
0

m2(t − τ,D)G(τ)dτ, (3.15)

where m1(t,D) and m2(t,D) are symbols of m1(t, ξ) and m2(t, ξ), respectively. From (3.14)
and (3.15), for any (p0, q0) ∈ L2 × H 1, we define F such that

F(p, q) = (
F1(p, q),F2(p, q)

) = (
“r.h.s.” of (3.14), “r.h.s.” of (3.15)

)
, (3.16)

where “r.h.s.” stands for “right hand side”.
The proof of Theorem 1.2 is similar but simpler than that of Theorem 1.1, thus we prove

Theorem 1.1 first.
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3.2. Proof of Theorem 1.1

In this subsection, we first prove several a priori estimates including the crucial bilinear esti-
mates. We define the corresponding resolution spaces as follows

X × Y = {
(p, q) ∈ C

([0,∞);L2) × C
([0,∞);H 1) and ‖p‖X + ‖q‖Y < ∞}

(3.17)

where ‖p‖X := ‖p‖L∞
t L2 + ‖p‖L2

t Ḣ
1 + ‖p‖

L1
t Ḣ

7
4

ψ

and ‖q‖Y := ‖q‖L∞
t H 1 + ‖q‖L2

t Ḣ
1 .

In what follows, we prove several key estimates.

Proposition 3.1. Let (p, q) be a solution to (1.7) with (p0, q0) ∈ L2 × H 1 and F and F1 be
defined as in (3.16). Then there hold∥∥F(p, q)

∥∥
L∞

t L2×L∞
t H 1 �

∥∥(p0, q0)
∥∥

L2×H 1 + ‖G‖L2
t L

2 + ‖G‖L1
t Ḣ

1, (3.18)∥∥F(p, q)
∥∥

L2
t Ḣ

1×L2
t Ḣ

1 �
∥∥(p0, q0)

∥∥
L2×H 1 + ‖G‖L2

t L
2 + ‖G‖L1

t Ḣ
1, (3.19)∥∥F1(p, q)

∥∥
L1

t Ḣ
7/4
ψ

�
∥∥(p0, q0)

∥∥
L2×H 1 + ‖G‖L1

t Ḣ
1 . (3.20)

Proof. In order to prove (3.18)–(3.20), we have to establish several estimates whose proof will
be divided into three parts.

Part I. Estimate of ‖F(p, q)‖L∞
t L2×L∞

t H 1 . At first, we derive the estimate for F1(p, q).

Since any L∞
ξ function m(ξ) is an Hs (or Ḣ s ) multiplier, we get from (3.11)–(3.13) that

m1(t, ξ),
2m2(t,ξ)

|ξ | ∈ L∞
t L∞

ξ . Hence by applying (2.4) with (r, s) = (∞,0) to m1(t,D)p0 +
2m2(t,D)Λ−1q0, we get∥∥m1(t,D)p0 + 2m2(t,D)Λ−1q0

∥∥
L∞

t L2 � ‖p0‖L2 + ‖q0‖L2 . (3.21)

From (3.11)–(3.13) and (3.21), we get m1(t, ξ) + 2m2(t, ξ),
〈ξ〉m2(t,ξ)

|ξ | ∈ L∞
t L∞

ξ . Applying (2.4)

for (r, s) = (∞,1) to m2(t,D)Λ−1p0 + (m1(t,D) + 2m2(t,D))q0 gives∥∥−2m2(t,D)Λ−1p0 + (
m1(t,D) + 2m2(t,D)

)
q0

∥∥
L∞

t H 1

�
∥∥2m2(t,D)Λ−1〈Λ〉p0

∥∥
L∞

t L2 + ∥∥(
m1(t,D) + 2m2(t,D)

)
q0

∥∥
L∞

t H 1

� ‖p0‖L2 + ‖q0‖H 1 . (3.22)

Now we deal with the third term in (3.14). Applying (3.11)–(3.13) and (2.7) with (r, ρ, s) =
(2,∞,1) and m(t, ξ) = m1(t, ξ) to G, we get∥∥∥∥∥

t∫
0

m1(t − τ,D)ΛG(τ)dτ

∥∥∥∥∥
L∞

t L2

=
∥∥∥∥∥

t∫
0

m1(t − τ,D)G(τ)dτ

∥∥∥∥∥
L∞

t Ḣ 1

� ‖G‖L2
t L

2 . (3.23)

It remains to control F2(p, q). By partition of unit, i.e., G = Gl + Gm + Gh, and Lemma 2.1,
we get
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∥∥∥∥∥
t∫

0

m2(t − τ,D)G(τ)dτ

∥∥∥∥∥
L∞

t H 1

=
∥∥∥∥∥

t∫
0

m2(t − τ,D)〈Λ〉G(τ)dτ

∥∥∥∥∥
L∞

t L2

≤
∥∥∥∥∥

t∫
0

(
m2(t − τ,D)Λ−1)Λ〈Λ〉(Gl + Gm

)
dτ + m2(t − τ,D)〈Λ〉Ghdτ

∥∥∥∥∥
L∞

t L2

≤
∥∥∥∥∥

t∫
0

m2(t − τ,D)Λ−1〈Λ〉(Gl + Gm
)
dτ

∥∥∥∥∥
L∞

t Ḣ 1

+
∥∥∥∥∥

t∫
0

m2(t − τ,D)Ghdτ

∥∥∥∥∥
L∞

t H 1

:= I11 + I12.

Applying (3.11)–(3.13), (2.7) and Bernstein inequalities in Lemma 2.1 to I11 and I12, we obtain
that

I11 =
∥∥∥∥∥

t∫
0

m2(t − τ,D)Λ−1〈Λ〉(Gl + Gm
)
dτ

∥∥∥∥∥
L∞

t Ḣ 1

≤ ∥∥〈Λ〉(Gl + Gm
)∥∥

L2
t L

2 �
∥∥〈·〉η(·) + 〈·〉ϕ(·)∥∥

L∞
ξ

‖G‖L2
t L

2 � ‖G‖L2
t L

2 , (3.24)

I12 =
∥∥∥∥∥

t∫
0

m2(t − τ,D)〈Λ〉Ghdτ

∥∥∥∥∥
L∞

t L2

≤ ∥∥Λ−1〈Λ〉ψ(D)G
∥∥

L1
t Ḣ

1 ≤ ∥∥∥∥| · |−1〈·〉ψ(·)∥∥
L∞

ξ
‖G‖Ḣ 1

∥∥
L1

t
� ‖G‖L1

t Ḣ
1 (3.25)

where in (3.25) we used 0 ≤ 〈ξ〉ψ(ξ)
|ξ | ≤ 2.

Part II. Estimate of ‖F(p, q)‖L2
t Ḣ

1×L2
t Ḣ

1 . In order to estimate F1(p, q), we get from

(3.11)–(3.13) that |ξ |m1(t, ξ) + 2m2(t, ξ) ∈ L2
t L

∞
ξ . Then by applying (2.5) with (r, s) = (2,1)

to m1(t,D)p0 + 2m2(t,D)Λ−1q0, we get∥∥m1(t,D)p0 + 2m2(t,D)Λ−1q0
∥∥

L2
t Ḣ

1 � ‖p0‖L2 + ‖q0‖L2 . (3.26)

From (3.11)–(3.13) and (3.21), we have |ξ |m1(t, ξ) ∈ L∞
t L2

ξ and m2(t, ξ) ∈ L∞
ξ L2

t . Then apply-

ing (2.5) with (r, s) = (2,1) to m2(t,D)Λ−1p0 + (m1(t,D) + 2m2(t,D))q0 gives∥∥−2m2(t,D)Λ−1p0 + m1(t,D)q0 + 2m2(t,D)q0
∥∥

L2
t Ḣ

1

� ‖p0‖L2 + ‖q0‖L2 + ‖Λq0‖L2 �
∥∥(p0, q0)

∥∥
L2×H 1 . (3.27)

Next we will deal with the third term on the r.h.s. of (3.14). Applying (3.11)–(3.13) and (2.7)
with r = ρ = s = 2 and m(t, ξ) = m1(t, ξ) to G, we get
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∥∥∥∥∥
t∫

0

m1(t − τ,D)ΛG(τ)dτ

∥∥∥∥∥
L2

t Ḣ
1

=
∥∥∥∥∥

t∫
0

m1(t − τ,D)G(τ)dτ

∥∥∥∥∥
L2

t Ḣ
2

� ‖G‖L2
t L

2 . (3.28)

Thus it remains to control F2(p, q). Following the similar arguments of (3.24)–(3.25), we get

∥∥∥∥∥
t∫

0

m2(t − τ,D)G(τ)dτ

∥∥∥∥∥
L2

t Ḣ
1

=
∥∥∥∥∥

t∫
0

m2(t − τ,D)ΛG(τ)dτ

∥∥∥∥∥
L2

t L
2

� ‖G‖L2
t L

2 + ∥∥Gh
∥∥

L1
t Ḣ

1 � ‖G‖L2
t L

2 + ‖G‖L1
t Ḣ

1 . (3.29)

Part III. Estimate of ‖F1(p, q)‖
L1

t Ḣ
7/4
ψ

. From maximal regularity results, (3.14) and (3.16),

we observe that

∥∥F1(p, q)
∥∥

L1
t Ḣ

7
4

ψ

≤ ∥∥m1(t,D)p0
∥∥

L1
t Ḣ

7
4

ψ

+ 2
∥∥m2(t,D)Λ−1q0

∥∥
L1

t Ḣ
7
4

ψ

+
∥∥∥∥∥

t∫
0

m1(t − τ)ΛG(τ)dτ

∥∥∥∥∥
L1

t Ḣ
7
4

ψ

:= I21 + I22 + I23. (3.30)

As for I21, by applying (3.11)–(3.12) and Lemma 2.1 to I21 with |ξ | ≥ 24, we claim that

I21 = ∥∥m1(t,D)p0
∥∥

L1
t Ḣ

7
4

ψ

�
∥∥e−ct |ξ |2 |ξ | 7

4 ψ(ξ)p̂0
∥∥

L1
t L

2
ξ
+ ∥∥e−ctψ(ξ)|ξ | 7

4 〈ξ〉−2
∥∥

L1
t L

∞
ξ

‖p̂0‖L2
ξ

� ‖p0‖L2 . (3.31)

In order to show (3.31), it suffices to estimate ‖e−ct |ξ |2 |ξ | 7
4 ψ(ξ)p̂0‖L1

t L
2
ξ
. In fact,

∥∥e−ct |ξ |2 |ξ | 7
4 ψ(ξ)p̂0

∥∥
L1

t L
2
ξ

=
1∫

0

( ∫
R3

e−2ct |ξ |2 |ξ | 7
2 ψ(ξ)|p̂0|2dξ

) 1
2

dt

+
∞∫

1

( ∫
|ξ |>24

e−2ct |ξ |2 |ξ | 7
2 ψ(ξ)|p̂0|2dξ

) 1
2

dt

:= I211 + I212.
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Applying the Plancherel equality to I211, we have supξ∈R3 e−2ct |ξ |2 |ξ | 7
2 ψ(ξ) � t− 7

4 and

I211 =
1∫

0

( ∫
R3

e−2ct |ξ |2 |ξ | 7
2 ψ(ξ)|p̂0|2dξ

) 1
2

dt �
1∫

0

t−
7
8 dt‖p̂0‖L2

ξ
� ‖p0‖L2 .

If |ξ | > 24 and t > 1, we get e−2ct |ξ |2 |ξ | 7
2 ψ(ξ) ≤ e−ct e−c|ξ |2 |ξ | 7

2 ψ(ξ) � e−ct and

I212 �
∞∫

1

( ∫
|ξ |>24

e−ct e−c|ξ |2 |ξ | 7
2 ψ(ξ)|p̂0|2dξ

) 1
2

dt �
∞∫

1

e−ct dt‖p̂0‖L2
ξ
� ‖p0‖L2 .

Similarly, by applying (3.11)–(3.12) and Lemma 2.1 to I22, we get

I22 = ∥∥m2(t,D)Λ−1q0
∥∥

L1
t Ḣ

7
4

ψ

�
∥∥e−ctψ(ξ)

∥∥
L1

t L
∞
ξ

‖q0‖
Ḣ

3
4

� ‖q0‖H 1 . (3.32)

It remains to estimate I23. Since m1(t − τ, ξ)|ξ | 7
4 � (t − τ)− 7

8 , m1(t − τ, ξ)|ξ | 11
4 � (t − τ)− 11

8 ,
we get

I23 =
∥∥∥∥∥

t∫
0

m1(t − τ)ΛG(τ)dτ

∥∥∥∥∥
L1

t Ḣ
7
4

ψ

=
∥∥∥∥∥

t∫
0

m1(t − τ)Λ
7
4 Λψ(D)G(τ)dτ

∥∥∥∥∥
L1

t L
2

�
∞∫

0

t∫
0

min
{
(t − τ)−

7
8
∥∥Λψ(D)G(τ)

∥∥
L2, (t − τ)−

11
4
∥∥ψ(D)G

∥∥
L2

}
dτdt

�
∞∫

0

t∫
0

min
{
(t − τ)−

7
8 , (t − τ)−

11
4
}∥∥G(τ)

∥∥
Ḣ 1dτdt

�
∞∫

0

∞∫
τ

min
{
(t − τ)−

7
8 , (t − τ)−

11
4
}
dt

∥∥G(τ)
∥∥

Ḣ 1dτ

�
∞∫

0

∞∫
0

min
{
t−

7
8 , t−

11
4
}
dt

∥∥G(τ)
∥∥

Ḣ 1dτ

� ‖G‖L1
t Ḣ

1 (3.33)

where in the fourth inequality we have applied (2.3) to ψ(D)G with (s, a) = (1,2).
Combining the above arguments, we finish the proof. �
Recalling G = Λ−1∇ · (p∇Λ−1q) and boundedness of the Riesz transforms in L2, we only

need to control ‖∇ · (p∇Λ−1q)‖L1
t L

2 = ‖G‖L1
t Ḣ

1 .
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The following key lemma is devoted to estimating ‖∇p ·∇Λ−1q‖L1
t L

2 and ‖pΛq‖L1
t L

2 , where

∇ · (p∇Λ−1q
) = ∇p · ∇Λ−1q − pΛq. (3.34)

Lemma 3.2. Let X × Y be defined as in (3.17). If u ∈ X and v ∈ Y , then we get

‖u∇v‖L1
t L

2 + ‖∇uv‖L1
t L

2 � ‖u‖L2
t Ḣ

1‖v‖L2
t Ḣ

1 + ‖u‖
L1

t Ḣ
7/4
ψ

‖v‖L∞
t H 1, (3.35)

‖uv‖L2
t L

2 � ‖u‖L2
t Ḣ

1‖v‖L∞
t H 1 . (3.36)

Proof. At first, we prove (3.35). Since u∇v = (ul + um)∇v + uh∇v, by Hölder’s inequality, we
have

‖u∇v‖L1
t L

2 ≤ ∥∥(
ul + um

)∇v
∥∥

L1
t L

2 + ∥∥uh∇v
∥∥

L1
t L

2

�
∥∥ul + um

∥∥
L2

t L
∞‖∇v‖L2

t L
2 + ∥∥uh

∥∥
L1

t L
∞‖∇v‖L∞

t L2

:= I31 + I32.

From (2.1) with |ξ | < 25 and the Sobolev embedding theorem, it is easy to prove that

I31 = ∥∥ul + um
∥∥

L2
t L

∞‖∇v‖L2
t L

2 �
∥∥ul + um

∥∥
L2

t L
6‖v‖L2

t Ḣ
1

�
∥∥ul + um

∥∥
L2

t Ḣ
1‖v‖L2

t Ḣ
1 � ‖u‖L2

t Ḣ
1‖v‖L2

t Ḣ
1 (3.37)

where in the fourth inequality, we used the fact that η(ξ) + ϕ(ξ) is an L2-multiplier. From (2.3)

with |ξ | > 24 and the Sobolev embedding theorem H
7
4 ↪→ L∞, we get

I32 = ∥∥uh
∥∥

L1
t L

∞‖∇v‖L∞
t L2 �

∥∥uh
∥∥

L1
t H

7/4‖v‖L∞
t H 1 � ‖u‖

L1
t Ḣ

7/4
ψ

‖v‖L∞
t H 1 . (3.38)

Estimate of ‖∇uv‖L1
t L

2 is rather simple. Indeed, by making use of Hölder’s inequality, we get

‖∇uv‖L1
t L

2 � ‖∇u‖L2
t L

3‖v‖L2
t L

6 � ‖u‖L2
t Ḣ

1‖v‖L2
t Ḣ

1 . (3.39)

Hence we prove (3.35).
It remains to prove (3.36). By making use of Hölder’s inequality, we get

‖uv‖L2
t L

2 � ‖u‖L2
t L

6‖v‖L∞
t L3 � ‖u‖L2

t Ḣ
1‖v‖L∞

t H 1 . (3.40)

Finally, combining (3.37)–(3.40), we prove all the desired results. �
Applying (3.35) and (3.36) to ∇p · ∇Λ−1q − pΛq and Λ−1∇ · (p∇Λ−1q), respectively,

combining Proposition 3.1, Lemma 3.2 and (3.17), we have the following a priori estimates.
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Corollary 3.3. Let (p, q) be a solution to system (1.7) with initial data (p0, q0) ∈ L2 × H 1 and
F be defined as in (3.16). Then there holds∥∥F(p, q)

∥∥
X×Y

�
∥∥(p0, q0)

∥∥
L2×H 1 + ∥∥(p, q)

∥∥2
X×Y

.

Proof of Theorem 1.1. Applying Lemma 2.4, Corollary 3.3 and following a standard fixed point
argument, we prove Theorem 1.1 when ‖(p0, q0)‖L2×H 1 is small. �
3.3. Proof of Theorem 1.2

In this subsection, we first prove the a priori estimates including the crucial bilinear estimates.

Proposition 3.4. Let (p, q) be a solution to system (1.7) with initial data (p0, q0) ∈ H 2 × H 1

and F be defined as in (3.16). Then there holds∥∥F(p, q)
∥∥

L∞
t H 2×L∞

t H 1 �
∥∥(p0, q0)

∥∥
H 2×H 1 + ‖p‖L∞

t H 2‖q‖L∞
t H 1 . (3.41)

Proof. We first derive the estimate for F1(p, q) as defined in (3.14)–(3.16). By apply-
ing m1(t, ξ),

m2(t,ξ)
|ξ | ∈ L∞

t L∞
ξ , 〈ξ〉ψ(ξ)

|ξ | ∈ L∞
ξ and (2.4) for (r, s) = (∞,0) to m1(t,D)p0 +

2m2(t,D)Λ−1q0, we get

∥∥m1(t,D)p0 + 2m2(t,D)Λ−1q0
∥∥

H 2 �
∥∥m1(t, ξ)〈ξ 〉2p̂0

∥∥
L2

ξ
+

∥∥∥∥m2(t, ξ)〈ξ 〉2

|ξ | q̂0

∥∥∥∥
L2

ξ

� ‖p0‖H 2 + ‖q0‖H 1 . (3.42)

Similarly, using m1(t, ξ)+2m2(t, ξ),
〈ξ〉m2(t,ξ)

|ξ | ∈ L∞
t L∞

ξ and applying (2.4) with (r, s) = (∞,1)

to m2(t,D)Λ−1p0 + (m1(t,D) + 2m2(t,D))q0, we get∥∥2m2(t,D)Λ−1p0 − (
m1(t,D) + 2m2(t,D)

)
q0

∥∥
L∞

t H 1 � ‖p0‖L2 + ‖q0‖H 1 . (3.43)

Next we deal with the third term on the r.h.s. of (3.14). Applying (3.11)–(3.13) and (2.7) with
(r, ρ, s) = (2,∞,1) and m(t, ξ) = m1(t, ξ) to G, we get

∥∥∥∥∥
t∫

0

m1(t − τ,D)G(τ)dτ

∥∥∥∥∥
L∞

t Ḣ 1

� ‖G‖L∞
t Ḣ−1 � ‖G‖

L∞
t L

3
2

� ‖p‖L∞
t H 2‖q‖L∞

t H 1 (3.44)

and ∥∥∥∥∥
t∫

0

m1(t − τ,D)ΛG(τ)dτ

∥∥∥∥∥
L∞

t Ḣ 2

=
∥∥∥∥∥

t∫
0

m1(t − τ,D)G(τ)dτ

∥∥∥∥∥
L∞

t Ḣ 3

� ‖G‖L∞
t Ḣ 1

� ‖∇p‖L∞
t L6‖q‖L∞

t L3 + ‖p‖L∞
t L∞‖∇q‖L∞

t L2

� ‖p‖L∞
t H 2‖q‖L∞

t H 1 . (3.45)
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It remains to control F2(p, q). By following the similar argument as in (3.24) and (3.25), we get

∥∥∥∥∥
t∫

0

m2(t − τ,D)Λ−1〈Λ〉(Gl + Gm
)
dτ

∥∥∥∥∥
L∞

t Ḣ 1

� ‖G‖L∞
t Ḣ−1 � ‖G‖

L∞
t L

3
2
, (3.46)

∥∥∥∥∥
t∫

0

m2(t − τ,D)〈Λ〉Ghdτ

∥∥∥∥∥
L∞

t L2

� ‖G‖L∞
t H 1, (3.47)

where we have used the damping property of Gh, i.e., ψ(ξ)m2(t, ξ) � e−ct .
Combining the above arguments, we finish the proof. �
The following proposition is used to prove decay estimates of solutions to (1.1).

Proposition 3.5. Let (p, q) be a solution to system (1.7) with initial data (p0, q0) ∈ H 2 × H 1

and F be defined as in (3.16). Then for any t > 0, there holds

(1 + t)
1
2
∥∥∇F(p, q)

∥∥
L2 + (1 + t)

7
8
∥∥Λ

7
4 F1(p, q)

∥∥
L2

�
∥∥(p0, q0)

∥∥
H 2×H 1 + sup

t>0

(
(1 + t)

1
2
∥∥(∇p,∇q)

∥∥
L2×L2

)2 + sup
t>0

(
(1 + t)

7
8
∥∥Λ

7
4 p

∥∥
L2

)2
.

Proof. Noticing that m1(t, ξ)|ξ | + m2(t, ξ) � e−ct |ξ |2 |ξ | + e−ct , then we have∥∥m1(t,D)Λp0 + 2m2(t,D)q0
∥∥

L2 �
∥∥m1(t, ξ)|ξ |p̂0

∥∥
L2

ξ
+ ∥∥m2(t, ξ)q̂0

∥∥
L2

ξ

� (1 + t)−
1
2
(‖p0‖H 1 + ‖q0‖H 1

)
and ‖m1(t,D)Λ

7
4 p0 + 2m2(t,D)Λ

3
4 q0‖L2 � (1 + t)− 7

8 (‖p0‖H 2 + ‖q0‖H 1) for all t > 0.
Similarly, for all t > 0, we have

∥∥2m2(t,D)p0 − (
m1(t,D)Λ + 2m2(t,D)Λ

)
q0

∥∥
L2 � (1 + t)−

1
2
(‖p0‖H 1 + ‖q0‖H 1

)
.

To control the third term on the r.h.s. of (3.14), by using m1(t, ξ)|ξ | � e−ct |ξ |2 |ξ |+e−ct , chain
rule, Plancherel identity and Sobolev embedding, for any t > 0, we get

∥∥∥∥∥
t∫

0

m1(t − τ,D)�G(τ)dτ

∥∥∥∥∥
L2

�
t∫

0

(t − τ)−
1
2 (1 + τ)−

5
4 dτ sup

τ>0
(1 + τ)

5
4
(‖∇p‖L3‖q‖L6 + ‖∇q‖L2‖p‖L∞

)
� (1 + t)−

1
2 sup

τ>0

(
(1 + τ)

3
4
∥∥Λ

3
2 p

∥∥
L2 + (1 + τ)

7
4
∥∥Λ

7
4 p

∥∥
L2

)
(1 + τ)

1
2 ‖∇q‖L2 .
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Similarly, for all t > 0, we have

∥∥∥∥∥
t∫

0

m1(t − τ,D)Λ
7
4 ∇G(τ)dτ

∥∥∥∥∥
L2

�
t∫

0

(t − τ)−
7
8 (1 + τ)−

5
4 dτ sup

τ>0
(1 + τ)

5
4
(‖∇p‖L3‖q‖L6 + ‖∇q‖L2‖p‖L∞

)
� (1 + t)−

7
8 sup

τ>0

(
(1 + τ)

3
4
∥∥Λ

3
2 p

∥∥
L2 + (1 + τ)

7
4
∥∥Λ

7
4 p

∥∥
L2

)
(1 + τ)

1
2 ‖∇q‖L2,

∥∥∥∥∥
t∫

0

m2(t − τ,D)∇Gdτ

∥∥∥∥∥
L2

�
t∫

0

(t − τ)−
1
2 (1 + τ)−

5
4 dτ sup

τ>0
(1 + τ)

5
4
(‖∇p‖L3‖q‖L6 + ‖∇q‖L2‖p‖L∞

)
� (1 + t)−

1
2 sup

τ>0

(
(1 + τ)

3
4
∥∥Λ

3
2 p

∥∥
L2 + (1 + τ)

7
4
∥∥Λ

7
4 p

∥∥
L2

)
(1 + τ)

1
2 ‖∇q‖L2 .

Combining the above arguments and ‖Λ 3
2 p‖L2 � ‖Λ 7

4 p‖
2
3
L2‖∇p‖

1
3
L2 , we finish the proof. �

Proof of Theorem 1.2. Applying Lemma 2.4, Propositions 3.4 and 3.5, following standard fixed
point argument, we prove Theorem 1.2 when ‖(p0, q0)‖L2×H 1 is small. �
3.4. Proof of Corollary 1.3

Proof of Corollary 1.3. Applying Lemma 2.4 and Corollary 3.3 to system (1.1), we prove the
existence results of Corollary 1.3. As for the decay property of v, one can use (1.20)–(1.21).
Hence we omit the details. �
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