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a b s t r a c t

This article proves the ill-posedness of the Cauchy problem for the two-dimensional
Keller–Segel model in Triebel–Lizorkin spaces, Ḟ−1,r

2 (R2) for 2 < r ≤ ∞. In particular, it is
shown that solutions can develop norm inflation under certain settings in that the solution
can become arbitrarily large after an arbitrarily short time even for small initial data.
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1. Introduction

In this article, we study the ill-posedness of a well-known chemotaxis model in two dimensions, the Keller–Segel model
of the parabolic–parabolic type,

∂tu −1u + ∇ · (u∇v) = 0 in R+ × R2, (1.1)

∂tv −1v − u = 0 in R+ × R2, (1.2)

(u, v)|t=0 = (u0, v0) in R2. (1.3)

Here, R+ := (0,∞), (t, x) ∈ R+ × R2, u = u(t, x) and v = v(t, x) are the scalar-valued density of amoebae and the scalar-
valued concentration of the chemical attractant, respectively, while (u0, v0) are the given initial data. The term chemotaxis
refers to the attraction andmovement of cellular organisms such as amoebae or bacteria in response to chemical stimulation.
The Keller–Segel model, first introduced by Keller and Segel in [1], is perhaps the most common model for describing this
motion of cell migration through chemical attraction. For more details on the model and its physical derivation, we refer
the reader to [1] and the work of Childress and Percus in [2].

When studying such nonlinear physical systems, there are several primary aspects of concern. One aspect is on the basic
property of local or global-in-time well-posedness of the problem. We may ask if solutions exist in some sense, are they
unique, and do they vary continuously upon small perturbations of the initial data. A closely related and important aspect
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is on the finite-time blowup of the solutions. Another related aspect concerns the setting in which the model is ill-posed. In
fact, the main objective of this article concerns the thorough analytical examination of this model by identifying the proper
functional space setting in terms of the Triebel–Lizorkin spaces in which the Cauchy problem is ill-posed. More specifically,
we examine the critical or dividing number with respect to r for the well-posedness of solutions in the homogeneous
Triebel–Lizorkin space, Ḟ−1,r

2 (R2). Remarkably, for the two-dimensional Keller–Segel model, our main result suggests that
the critical number is r = 2. Here, by the critical number we mean that well-posedness holds for r = 2, but the system is,
in fact, ill-posed in Ḟ−1,r

2 (R2) for 2 < r ≤ ∞. Let us be more precise in our description of the results in this paper. When
we refer to the well-posedness (or ill-posedness) for (1.1)–(1.3) in Triebel–Lizorkin spaces, wemean the well-posedness (or
ill-posedness) of mild solutions for initial data (u0, v0) ∈ Ḟ−1,r

2 (R2) × Ḟ 0,2
∞
(R2). As a result of establishing this dichotomy

between well-posedness and ill-posedness, we find the critical setting in which the model remains valid while gaining a
deeper understanding of the setting in which the model fails to capture even the most basic deterministic features.

To show the ill-posedness of system (1.1)–(1.3), we implement the novel framework of norm-inflation pioneered by
Bourgain and Pavlović [3] in their study of the ill-posedness of the Navier–Stokes equation in the largest critical space Ḃ−1,∞

∞
;

but in doing so, we contribute new approaches and ideas by adopting this technique in our examination of the Keller–Segel
model.

1.1. Remarks on the well-posedness and finite-time blow-up

Wemention that the set of equations (1.1)–(1.2) is scale invariant since both equations,

∂tu −1u + ∇ · (u∇v) = 0 and ∂tv −1v − u = 0,

are scale invariant under the transformations

(u(t, x), v(t, x)) → (λ2u(λ2t, λx), v(λ2t, λx)) for all λ > 0.

The idea of using a functional setting invariant by scaling is now classical and originates from several works. For instance,
for more on the global existence of mild solutions to system (1.1)–(1.3) with initial data (u0, v0) ∈ H

n
r −2,r(Rn)× H

n
r ,r(Rn)

with max{1, n
4 } < r < n

2 , see [4]; for initial data (u0, v0) ∈ Ln/2w (Rn) × BMO(Rn) with n ≥ 3, see [5]; and for initial data
(u0, v0) ∈ L

n
2 (Rn) × Ḣ2α, n

2α (Rn) with n ≥ 3 and n
2(n+2) < α ≤

1
2 , see [6]. In [7], Deng and Li proved the global-in-time

existence and uniqueness for the Cauchy problem (1.1)–(1.3) with initial data in L1(R2)× L∞(R2) and proved the existence
and uniqueness ofmild solutions for initial data inH1

b (R
2)×H1(R2). In addition to results on the existence and uniqueness of

mild solutions in scale invariant spaces, studies on the asymptotic behavior of solutions can be found in [8,9], and studies on
stationary solutions can be found in [10,11]. The reader is referred to [12] and the references therein for results concerning
the quasilinear degenerate Keller–Segel system. In addition, the finite-time blowup of solutions has been studied for the
simpler Keller–Segel model of the parabolic–elliptic type (i.e. vt = 0 in (1.2)) in [13–17]. For this system, it is known that
there is a critical threshold number for the initial density such that global-in-time well-posedness holds for values below
this threshold number and finite-time blowup occurs for values above this threshold number. For the parabolic–parabolic
type, analogous results on finite-time blowuphave remained relatively open, however, the criticalmass threshold and global
well-posedness have been studied in [18,19].

1.2. Basic notions of norm inflation

Let us describe the general idea for showing ill-posedness via norm inflation, but first, let us recall the definition of
well-posedness. A Cauchy problem is said to be locally well-posed in Z if for every initial data u0 ∈ Z there exists a time
T = T (u0) > 0 such that

(1) a solution of the initial value problem exists in the time interval [0, T ],
(2) is unique in a certain Banach space of functions Y ⊂ C([0, T ]; Z) or Y ⊂ Cw([0, T ]; Z),
(3) the solution map from initial u0 to solution u is continuous from Z to C([0, T ); Z) or Cw([0, T ]; Z).

Furthermore, if T can be taken arbitrarily large, we say that the Cauchy problem is globally well-posed, andwe say the Cauchy
problem is ill-posed if it is not well-posed. By solutions to the Keller–Segel model, we mean mild solutions to the equivalent
system of integral equations as follows:

u = et∆u0 − B(u, v), (1.4)

v = et∆v0 + L(u), (1.5)

where

B(u, v) :=

 t

0
e(t−τ)∆∇ · (u∇v) dτ and L(u) :=

 t

0
e(t−τ)∆u dτ , (1.6)
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are the bilinear and linear terms, respectively. Our ill-posedness result shows that the third condition (3) of continuity is
violated by carefully constructing a particular class of arbitrarily small initial data that produce arbitrarily large solutions
in arbitrarily short time. In doing so, we demonstrate that the culprit responsible for generating norm inflation lies in the
bilinear term in equation (1.4). Therefore, it is the density u in the Keller–Segelmodelwhich exhibits norm inflation. Roughly
speaking, the key steps to showing this norm inflation property is to first decompose the integral system, especially the
bilinear term, into several parts: one part stemming from the bilinear term responsible for norm inflation and the remaining
terms which can be controlled. The a priori estimates for solutions of the Cauchy problem in Ḟ−1,r=2

2 (R2) × BMO(R2) is
an important ingredient in this step since they are exploited in order to control some of those remaining terms in the
decomposition. The Ḟ−1,r>2

2 (R2)—norm of the solution u in arbitrary short time can then be bounded from below by the
norm inflation term and the controlled terms. Thus, this proves the solution map for u is discontinuous at the initial time.
We mention that the a priori estimates established here shows the continuity of the bilinear and linear operators (1.6) and
such bounds are crucial in proving well-posedness results for the associated Cauchy problem. Naturally, this leads one to
seek well-posedness results for (1.1)–(1.3) with initial data in Ḟ−1,2

2 (R2) × BMO(R2), and this can certainly be addressed
more thoroughly in future investigations.

Thismanuscript is organized as follows. Section 2 recalls several preliminary definitions, results, and tools fromharmonic
analysis employed throughout this paper. Then, the statement of our main result is provided at the end of the section.
Section 3 establishes the a priori estimates on the bilinear and linear terms stemming from (1.1)–(1.3) with initial data
(u0, v0) ∈ Ḟ−1,2

2 (R2) × BMO(R2). Recall that such estimates in these function spaces will play a key role in establishing
the ill-posedness of the Keller–Segel model. Section 4 proves the main ill-posedness result by first outlining the main steps
in the proof. Nevertheless, for completeness sake and for the reader’s convenience, the intermediate steps and preliminary
estimates which complement the main steps are then given in the form of several lemmas.

2. Preliminaries and the main result

The proof of the main result presented in this paper requires a dyadic Littlewood–Paley decomposition. Let us briefly
explain how it can be developed in R2, but the reader is referred to [20] for further details. Let S(R2) be the Schwartz class
and ϕ(ξ) = ϕ(|ξ |) be a smooth function valued in [0, 1] such that

supp ϕ ⊂ {ξ ∈ R2
; 3/4 ≤ |ξ | ≤ 8/3} and


j∈Z

ϕ(2−jξ) = 1, ξ ≠ 0. (2.1)

For f ∈ S′(R2), the space of tempered distributions, we define the homogeneous dyadic block and partial summation
operator as follows:

∆jf (x) := F −1
ξ (ϕ(2−jξ)f (ξ))(x) and Sjf (x) :=


i≤j−1

∆if (x) for all j ∈ Z.

Moreover, the Littlewood–Paley decomposition satisfies the following quasi-orthogonal properties:

∆i∆jf ≡ 0 if |i − j| ≥ 2, ∆j(Si−1f∆ig) ≡ 0 if |i − j| ≥ 5. (2.2)

Using Bony’s decomposition, we can split the product of two functions f and g ,

fg = Tf g + Tg f + R(f , g), (2.3)

where Tf g =


j Sj−1f∆jg, Tg f =


j Sj−1g∆jf and R(f , g) =


j
1

l=−1∆jf∆j+lg . Particularly, R(f , g) is the remainder, and
Tf g and Tg f are the paraproducts.

Let us define the Triebel–Lizorkin spaces and the related Besov spaces. The BMO(R2) space, which is equivalent to
Ḟ 0,2
∞
(R2), plays an important role in this paper, so we provide an equivalent definition for this space as well.

Definition 2.1. For (s, q, r) ∈ R × (1,∞)× [1,∞], we define Ḃs,r
q (R

2) to be the set of tempered distributions f such that

∥f ∥Ḃs,rq (R2) = ∥{2js
∥∆jf ∥Lq(R2)}j∈Z∥ℓr < ∞, (2.4)

and we define Ḟ s,r
q (R

2) to be the set of tempered distributions f such that

∥f ∥Ḟ s,rq (R2) = ∥∥{2js∆jf }j∈Z ∥ℓr ∥Lq(R2) < ∞. (2.5)

Furthermore, we define BMO(R2) to be the space of tempered distributions f such that

∥f ∥BMO(R2) = sup
x∈R2,r>0


1
r2


|y−x|<r

 r2

0
|∇et∆f (y)|2dtdy

 1
2

< ∞.
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Now we are ready to state our main result.

Theorem 2.2. For any 2 < r ≤ ∞ and δ > 0, there exists a solution (u, v) to system (1.1)–(1.3) with initial data (u0, v0)

∈ Ḟ−1,r
2 (R2)× BMO(R2) satisfying

∥u0∥Ḟ−1,r
2 (R2)

. δ, ∥v0∥BMO(R2) . δ,

such that for some 0 < T < δ, ∥u(T )∥Ḟ−1,r
2 (R2)

& 1
δ
, but ∥v(T )∥BMO(R2) . δ.

Remark 2.3. From this point on, we shall use C and c to denote universal constants which may change from line to line.
Both F f andf denote the Fourier transform of f with respect to the spatial variable, while F −1 denotes the inverse Fourier
transform. We denote A ≤ CB by A . B and A . B . A by A ∼ B.

3. A priori estimates

In this section, we first give several preliminary lemmas and obtain the bilinear and linear estimates. In order to prove
the bilinear and linear estimates below, we require the following result on Carleson measures, cf. [21, Proposition 10.1].

Lemma 3.1. Let {βj(x)}j be a sequence of measurable functions on R2 defining a Carleson measure on Z × R2,

sup
x0∈R2,r>0

1
r2

2jr>1


|x−x0|<r

|βj(x)|2dx < ∞. (3.1)

Let h(x) ∈ L1 so that (1 + |x|)3h(x) ∈ L∞ and hj(x) = 22jh(2jx). Then for any f ∈ L2, there holds
R2


j∈Z

|f ∗ hj|
2
|βj|

2dx ≤ C ∥f ∥2
L2 sup

x0∈R2, r>0

1
r2

2jr>1


|x−x0|<r

|βj(x)|2dx, (3.2)

where C does not depend on f , h or {βj}j∈Z.

Remark 3.2. From (2.1), if we denote the kernel of ψ(∇) by h(x), then h(·) ∈ L1(R2). The kernel of ψ(2−j
∇) is hj(x) =

22jh(2jx) and (1 + | · |)3h(·) ∈ L∞(R2); else if we let ϕ(ξ) =


j≤0 ψ(2
−jξ), then ϕ is compactly supported in {ξ ∈

R2
; |ξ | ≤

8
3 }. If we denote F −1(ϕ(ξ)) by h(x) and 22jh(2jx) by hj(x), then it is easy to check that h(·) ∈ L1(R2) and

(1 + | · |)3h(·) ∈ L∞(R2). Moreover, since each BMO(R2) function can be defined equivalently by a Carleson measure and
each Carleson measure defines a BMO(R2) function, we have that for any BMO(R2) function b, {∆jb}j∈Z satisfies the above
assumptions for {βj}j∈Z. Consequently, we find that for any BMO(R2) function g and L2(R2) function f ,

∥Tf g∥L2(R2) + ∥R(f , g)∥L2(R2) . ∥f ∥L2(R2)∥g∥BMO(R2). (3.3)

The definitions and remark above can be found in several books of harmonic analysis, including those on pseudodiffer-
ential operators, see for instance [22, Chapter 8, Paraproducts] and other relevant texts such as [23,24].

The final lemma of this section establishes the bilinear and linear estimates.

Lemma 3.3. Let B(u, v) and L(u) be defined as in (1.6). Then we have the following estimates:
(i) ∥B(u, v)∥L2(0,T ;L2(R2)) . ∥u∥L2(0,T ;L2(R2))(∥v∥L∞(0,T ;BMO(R2)) + ∥∇v∥L2(0,T ;BMO(R2))),
(ii) ∥B(u, v)∥L∞(0,T ;Ḟ−1,2

2 (R2))
. ∥u∥L2(0,T ;L2(R2))(∥v∥L∞(0,T ;BMO(R2)) + ∥∇v∥L2(0,T ;BMO(R2))),

(iii) ∥L(u)∥L∞(0,T ;BMO(R2)) + ∥∇L(u)∥L2(0,T ;BMO(R2)) . ∥u∥L2(0,T ;L2(R2)).

Proof. First recall the definition of the bilinear operator B(u, v) and linear operator L(u),

B(u, v) =

 t

0
e(t−τ)∆∇ · (u∇v) dτ , L(u) =

 t

0
e(t−τ)∆udτ .

Since the inner function u∇v in the bilinear operator is in product form, we can use Bony’s decomposition to express it as
the sum of three parts,

u∇v = Tu∇v + R(u,∇v)+ T∇vu. (3.4)

Since Riesz transforms are bounded in L2(R2), the energy method, (3.3) and Hölder’s inequality imply t

0
e(t−τ)∆∇ · (Tu∇v + R(u,∇v)) dτ


L2(0,T ;L2(R2))

. ∥Tu∇v + R(u,∇v)∥L1(0,T ;L2(R2))

. ∥u∥L2(0,T ;L2(R2))∥∇v∥L2(0,T ;BMO(R2)). (3.5)
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It remains to bound the last part,
 t
0 e(t−τ)∆∇ · (T∇vu)dτ . By the maximal regularity for the heat kernel (cf. [21, Theorem 7.3,

p.64]) and because Ḟ−1,2
2 (R2) = Ḣ−1(R2), we see that t

0
e(t−τ)∆∇ · (T∇vu)dτ


L2(0,T ;L2(R2))

. ∥T∇vu∥L2(0,T ;Ḟ−1,2
2 (R2))

. (3.6)

The Minkowski inequality, (2.3), Hölder’s inequality, and Young’s inequality imply

∥T∇vu∥Ḟ−1,2
2 (R2)

.


j∈Z

2−2j
∥Sj∇v∆ju∥2

L2(R2)

 1
2

.


j∈Z


i<j−1

2i−j
∥∆iv∥L∞(R2)∥∆ju∥L2(R2)

2
 1

2

. sup
i∈Z

∥∆iv∥L∞(R2)


j

∥∆ju∥2
L2(R2)

 1
2

. ∥v∥BMO(R2)∥u∥L2(R2), (3.7)

where in the last inequality, we used the fact that BMO(R2) ⊂ Ḃ0,∞
∞
(R2) and Ḃ0,2

2 (R2) = L2(R2). Applying (3.7) to (3.6) and
using Hölder’s inequality, we obtain t

0
e(t−τ)∆∇ · (T∇vu)dτ


L2(0,T ;L2(R2))

. ∥v∥L∞(0,T ;BMO(R2))∥u∥L2(0,T ;L2(R2)).

Estimate (ii) is handled similarly i.e. t

0
e(t−τ)∆∇ · (u∇v) dτ


L∞(0,T ;Ḟ−1,2

2 (R2))

. ∥Tu∇v + R(u,∇v)∥L1(0,T ;L2(R2)) + ∥T∇vu∥L2(0,T ;Ḟ−1,2
2 (R2))

. ∥u∥L2(0,T ;L2(R2))∥∇v∥L2(0,T ;BMO(R2)) + ∥u∥L2(0,T ;L2(R2))∥v∥L∞(0,T ;BMO(R2)). (3.8)

By combining the above arguments, we arrive at the estimates (i) and (ii). To prove estimate (iii), we use the embedding
Ḟ 1,2
2 (R2) ⊂ BMO(R2), Plancherel’s identity, and Young’s inequality to obtain

∥L(u)∥L∞(0,T ;BMO(R2)) . ∥L(u)∥L∞(0,T ;Ḟ1,22 (R2))
. ∥u∥L2(0,T ;L2(R2)).

Furthermore, by the maximal regularity for the heat kernel and since Ḟ 1,2
2 (R2) ⊂ BMO(R2), we see that

∥∇L(u)∥L2(0,T ;BMO(R2)) . ∥1L(u)∥L2(0,T ;L2(R2)) . ∥u∥L2(0,T ;L2(R2)).

This completes the proof. �

4. Proof of ill-posedness

In this section, for the sake of simplicity, it suffices to show the ill-posedness of the Keller–Segel model in Ḟ−1,r
2 (T2) (r >

2) since the ill-posedness result for the non-periodic case can be treated using themethods formaximal functions introduced
in [25,26] to the cutoff functionu0(x)φ(x). Here,u0 is given by (4.5) belowandφ satisfies supp φ̂ ⊂ {ξ ∈ R2

; |ξ | ≤ 1/4}, 0 ≤

φ̂ ≤ 1 and


R2 φ̂ dξ ∼ 1.

4.1. Rewriting the Keller–Segel model

Adopting the ideas from [3], we rewrite the two-dimensional Keller–Segel model by decomposing it into its first
approximation, second approximation and remainder terms as follows,

u = u1 − u2 + y, v = v1 + v2 + z, (4.1)

where

u1 := et∆u0, u2 := B(u1, v1), v1 := et∆v0, v2 := L(u1). (4.2)

Moreover, the remainder terms satisfy the integral equations,

y = V2 + V1 + V0, z = L(y)− L(u2), (4.3)

on (0,∞)with the initial conditions (y(0), z(0)) = (0, 0),

V2 = −B(y, z), V1 = B(u2 − u1, z)− B(y, v1 + v2), V0 = B(u2, v1 + v2)− B(u1, v2). (4.4)
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4.2. Construction of initial data for the Keller–Segel model

For a fixed small number δ > 0 we define the initial data as follows:
u0(x) =

Q
√
ρ

ρ
s=1

ks cos(ksx2),

v0(x) =
1

√
ρQ

ρ
s=1


cos((1 − ks)x2)


,

(4.5)

where the parameters satisfy:

• k0 = 2M0 ;

ks = 2sk0ks−1 = 2
(s+1)(s+2M0)

2 with s = 1, 2, . . . and M0 ≫ 4.

According to the constructions of u0 and v0, it is easy to check that

et∆u0 =
Q

√
ρ

ρ
s=1

kse−tk2s cos(ksx2), et∆v0 =
1

√
Qρ

ρ
s=1

e−t(1−ks)2 cos((1 − ks)x2). (4.6)

4.3. Outline of the proof

In order to effectively communicate the main ideas in the proof of Theorem 2.2, this subsection outlines the main steps.
Further details on the intermediate steps are given in the subsections which follow hereafter.
Step 1: Fix a real number δ > 0. Split u2 from (4.1) into three parts, u2 = u2,0 + u2,1 + u2,2, where the first term u2,0 exhibits
norm inflation while u2,1 and u2,2 are controllable terms.
Step 2: With our careful choice of initial conditions and making appropriate choices for Q , ρ, k0, and T , we establish the
following estimates:

• ∥u2,0(T )∥L2(T2) & Q
1
2 ,

• ∥u2,1(T )+ u2,2(T )∥Ḟ−1,2
2 (T2)

. Q
1
2 ρ−1,

• ∥u1(T )∥Ḟ−1,r
2 (T2)

. ρ
1
r −

1
2 Q ,

• ∥y(T )∥Ḟ−1,2
2 (T2)

.

T

1
2 + ρ−1


+ Q Q 3

+3

k−1
0 + ρ−

1
2


.

Step 3: (Norm Inflation) The estimates in Step 2 imply

∥u(T )∥Ḟ−1,r
2 (T2)

≥ ∥u2,0(T )∥Ḟ−1,r
2 (T2)

− ∥u1(T )∥Ḟ−1,r
2 (T2)

− ∥u2,1(T )+ u2,2(T )− y(T )∥Ḟ−1,r
2 (T2)

& ∥u2,0(T )∥L2(T2) − ∥u1(T )∥Ḟ−1,2
2 (T2)

− ∥u2,1(T )+ u2,2(T )− y(T )∥Ḟ−1,2
2 (T2)

& ∥u2,0(T )∥L2(T2) − ρ
1
r −

1
2 Q − Q

1
2 ρ−1

−


T

1
2 + ρ−1


− Q Q 3

+3

k−1
0 + ρ−

1
2


& Q

1
2


1 − ρ−1

− ρ
1
r −

1
2 Q

1
2 − Q−

1
2


T

1
2 + ρ−1


+ Q Q 3

+
5
2


k−1
0 + ρ−

1
2


& Q

1
2 & 1/δ, (4.7)

provided that ρ
1
r −

1
2 Q

1
2 ,Q Q 3

+5/2(k−1
0 + ρ−

1
2 ) ≪ 1. Hence, for sufficiently large ρ and k0 and T ≪ Q−

1
2 ≪ δ, (4.7) holds

thereby showing u exhibits norm inflation. This will complete the proof of the ill-posedness result. Therefore, it remains to
establish the estimates listed in step 2. These estimates are provided in the subsequent lemmas below.

4.4. Estimates for u0, et∆u0, v0 and et∆v0

Lemma 4.1. For any 2 ≤ r ≤ ∞, we have

∥u0∥Ḟ−1,r
2 (T2)

+ ∥et∆u0∥Ḟ−1,r
2 (T2)

. ρ
1
r −

1
2 Q , (4.8)

∥v0∥BMO(T2) + ∥et∆v0∥BMO(T2) . Q−
1
2 . (4.9)
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Proof. From (4.5), (4.6), max{e−tk2s , e−t(1−ks)2} ≤ 1 and Definition 2.1, it suffices to estimate u0 and v0.
Estimates for u0: We prove this for the two endpoints r = 2 and r = ∞ then obtain the estimate for all intermediate values
of r by interpolation. For r = 2, by orthogonality and the fact that Ḟ−1,2

2 (T2) = Ḣ−1(T2), we obtain

∥u0∥Ḟ−1,2
2 (T2)

∼
Q

√
ρ




ρ
s=1


cos(ksx2)

2 1
2

L2(T2)

. Q . (4.10)

For r = ∞, Definition 2.1 implies

∥u0∥Ḟ−1,∞
2 (T2)

∼
Q

√
ρ

 sup
s∈{1,...,ρ}

| cos(ksx2)|

L2(T2)

.
Q

√
ρ
, (4.11)

where in each dyadic annulus {ξ ∈ R2
;

3
42

j
≤ |ξ | ≤

8
32

j
}, there exists at most one ks (s = 1, . . . , ρ). Combining (4.10) and

(4.11) and by interpolation, we have that

∥u0∥Ḟ−1,r
2 (T2)

≤ ∥u0∥[Ḟ−1,2
2 (T2),Ḟ−1,∞

2 (T2)] 2
r

. ρ
1
r −

1
2 Q for 2 ≤ r ≤ ∞. (4.12)

Estimates for v0: From the construction of v0 and the definition of BMO, we have

∥v0∥BMO(T2) . ∥et∆∇v0∥L2(0,∞;L∞(T2))

.
1

√
ρQ

 ρ
s=1

e−t(1−ks)2(1 − ks) sin

(1 − ks)x2


L2(0,∞;L∞(T2))

.
1

√
ρQ


∞

0

ρ
s=1

ρ
ℓ=1

e−ct(k2s +k2
ℓ
)kskℓ dt

 1
2

.
1

√
ρQ


ρ

j=1


∞

0
e−ctk2j k2j dt

 1
2

. Q−
1
2 , (4.13)

since
ρ

j=1


1≤i<j e
−ct(k2i +k2j )kikj .

ρ

j=1 e
−ctk2j k2j . �

Lemma 4.2. For any T > 0, we have

∥et∆u0∥L2(0,T ;L2(T2)) . Q , (4.14)

∥et∆v0∥L∞(0,T ;BMO(T2)) . Q−
1
2 , (4.15)

∥et∆∇v0∥L2(0,T ;BMO(T2)) . Q−
1
2 . (4.16)

Proof. To prove estimate (4.14), we have

∥et∆u0∥L2(0,T ;L2(T2)) =
Q

√
ρ

 ρ
s=1

e−tk2s ks cos(ksx2)


L2(0,T ;L2(T2))

.
Q

√
ρ

 ρ
s=1

e−tk2s ks


L2(0,T )

.
Q

√
ρ

 T

0

ρ
s=1

ρ
ℓ=1

e−ct(k2s +k2
ℓ
)kskℓ dt

 1
2

. Q . (4.17)

Next, we prove (4.15). By recalling the definition of the BMO(T2) space, we see that for any t > 0,

∥et∆v0∥BMO(T2) =


sup

x0∈T2,r>0

1
r2

 r2

0


|x−x0|<r

eσ∆(∇et∆v0)
2 dσdx

 1
2

.
1

√
ρQ

 ∞

0

 ρ
s=1

e−(σ+t)(1−ks)2(1 − ks) sin(x2 − ksx2)


2

L∞(T2)

dσ

 1
2
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.
1

√
ρQ

 ∞

0


ρ

s=1

e−c(σ+t)k2s ks

2

dσ

 1
2

. Q−
1
2 . (4.18)

Hence,

∥et∆v0∥L∞(0,T ;BMO(T2)) . Q−
1
2 . (4.19)

At last, we prove the third estimate which follows similarly to the proof of (4.18) since

∥et∆∇v0∥L2(0,T ;BMO(T2)) . ∥et∆∇v0∥L2(0,T ;L∞(T2)) . Q−
1
2 . (4.20)

This completes the proof of the lemma. �

4.5. Estimates for u2,0, u2,1, u2,2 and v2

From (4.2) and the construction of the initial data, we can rewrite the approximation terms as follows: u2 = u2,0 +u2,1 +

u2,2, with

u2,0 =
Q

1
2

2ρ

ρ
s=1

 t

0
e−(t−τ)e−τ(k2s +(1−ks)2)ks(ks − 1) cos x2 dτ , (4.21)

u2,1 =
Q

1
2

2ρ

ρ
s=1


ℓ≠s

 t

0

ks(kℓ − 1)(1 + ks − kℓ)

e(t−τ)(1+ks−kℓ)2+τ(k2s +(1−kℓ)2)
cos((1 + ks − kℓ)x2) dτ , (4.22)

u2,2 =
Q

1
2

2ρ

ρ
s=1

ρ
ℓ=1

 t

0

ks(kℓ − 1)(1 − ks − kℓ)

e(t−τ)(1−ks−kℓ)2+τ(k2s +(1−kℓ)2)
cos((1 − ks − kℓ)x2) dτ . (4.23)

The following estimates are concerned with the norm inflation terms.

Lemma 4.3. Suppose that k−2
1 = 2−2−4M0 ≪ T ≪ 1, then we have

∥u2,0(T )∥Ḟ−1,r
2 (T2)

∼ Q
1
2 , (4.24)

∥u2,0∥L2(0,T ;L2(T2)) . T
1
2 Q

1
2 . (4.25)

Proof. By the definition of u2,0, k−2
1 ≪ T ≪ 1 for t = T , we have that

u2,0(T ) =
Q

1
2

2ρ

ρ
s=1

e−T (1 − eT (1−k2s −(1−ks)2))
ks(ks − 1)

k2s + (1 − ks)2
cos x2 ∼ Q

1
2 cos x2. (4.26)

By noticing that the frequency of cos x2, i.e. (0, 1), is localized in
 3
42

−1
≤ |ξ | ≤

8
32

−1


∪ {
3
4 ≤ |ξ | ≤

8
3 }, (4.24) and (4.25)

follow from (4.26) by direct computations. �

Lemma 4.4. With the definition of the initial data, the term u2,1 satisfies the bounds

∥u2,1∥L2(0,T ;L2(T2)) + ∥u2,1∥L∞(0,T ;Ḟ−1,2
2 (T2))

.
Q

1
2

ρ
, (4.27)

∥u2,2∥L2(0,T ;L2(T2)) + ∥u2,2∥L∞(0,T ;Ḟ−1,2
2 (T2))

.
Q

1
2

ρ
. (4.28)

Proof. It suffices to prove (4.27). Note that for any s ≠ ℓ, |1 + ks − kℓ| ∼ ks + kℓ. Thus,

∥u2,1∥L2(0,T ;L2(T2)) .
Q

1
2

ρ

 ρ
s=1


ℓ≠s

 t

0
e−c(t−τ)(ks+kℓ)2−cτ(k2s +k2

ℓ
)(ks + kℓ)kskl dτ


L2(0,T )

.
Q

1
2

ρ

 ρ
s=1


l≠s

 t

0
e−ct(ks+kℓ)2(ks + kℓ)kskℓ dτ


L2(0,T )
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.
Q

1
2

ρ

 ρ
s=1

e−ctk2s tk2s ks−1 +

ρ
ℓ=1

e−ctk2
ℓ tk2ℓkℓ−1


L2(0,T )

.
Q

1
2

ρ


ρ

s=1

ks−1

ks
+

ρ
ℓ=1

kl−1

kℓ


.

Q
1
2

ρ
. (4.29)

Moreover,

∥u2,1∥L∞(0,T ;Ḟ−1,2
2 (T2))

.
Q

1
2

ρ

 ρ
s=1


ℓ≠s

 t

0
e−c(t−τ)(ks+kℓ)2−cτ(k2s +k2

ℓ
)kskl dτ


L∞(0,T )

.
Q

1
2

ρ

 ρ
s=1

e−ctk2s tksks−1 +

ρ
ℓ=1

e−ctk2
ℓ tkℓkℓ−1


L∞(0,T )

.
Q

1
2

ρ


ρ

s=1

ks−1

ks
+

ρ
ℓ=1

kl−1

kℓ


.

Q
1
2

ρ
. (4.30)

Estimate (4.27) follows from (4.29) and (4.30), and (4.28) follows from similar arguments. Thus, this completes the proof of
the lemma. �

Lemma 4.5. The linear term v2 satisfies the estimate,

∥v2∥L∞(0,T ;BMO(T2)) + ∥∇v2∥L2(0,T ,BMO(T2)) .
T

1
2 Q

√
ρ
. (4.31)

Proof. From (4.2) and construction of the initial data, we get
v2 = L(u1) =

 t

0
e(t−τ)∆+τ∆u0 dτ =

Q
√
ρ

ρ
s=1

e−tk2s tks cos(ksx2),

∇v2 = L(∇u1) = −
Q

√
ρ

ρ
s=1

e−tk2s (0, tk2s )
T sin(ksx2).

(4.32)

Recalling that L∞(T2) ⊂ BMO(T2), we have
∥v2∥L∞(0,T ;BMO(T2)) . ∥v2∥L∞(0,T ;L∞(T2)) .

T
1
2 Q

√
ρ

ρ
s=1

e−tk2s t
1
2 ks .

T
1
2 Q

√
ρ
,

∥∇v2∥L2(0,T ;BMO(T2)) . ∥∇v2∥L2(0,T ;L∞(T2)) .
Q

√
ρ

 ρ
s=1

e−tk2s tk2s


L2(0,T )

.
T

1
2 Q

√
ρ
.

Therefore, we finish the proof. �

4.6. Estimates on the remainder terms y and z

As described earlier, we need to estimate the remainder terms especially the term y and show they remain relatively
small, but as illustrated below, this requires a more delicate estimate on the term u1 than what was achieved in the earlier
subsection. In order to do so, we must control the terms in smaller time scales then sum their contributions to obtain the
desired estimate on the global time scale. As before, this technical procedure was developed in [3]. Let k−2

ρ = T0 < T1 <
T2 < · · · < Tβ = k−2

0 where β = Q 3, Tα = k−2
ρα

, ρα = ρ − αQ−3ρ, and α = 0, 1, 2, . . . , β .

Lemma 4.6. Let u1 = et∆u0. Then for any α ∈ {0, 1, . . . ,Q 3
}, we have

∥u1∥L2(Tα ,Tα+1;L2(T2)) =
et∆u0


L2(Tα ,Tα+1;L2(T2))

.
Q

√
ρ


1 +

√
ρQ−

3
2


. (4.33)

Particularly, from T0 = k−2
ρ , we have

∥u1∥L2(0,T0;L2(T2)) .
Q

√
ρ

and ∥v1∥L2(0,T0;L2(T2)) .
1

√
Qρ

. (4.34)
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Proof. It suffices to prove (4.33). By Plancherel’s identity and by the construction of the initial datum u0, we get

∥et∆u0∥L2(T2) ∼
Q

√
ρ


ρ

s=1

k2s e
−2tk2s

 1
2

:= I. (4.35)

It suffices to estimate Tα+1

Tα
I 2dt

 1
2

.
Q

√
ρ


ρα+1
s=1

+

ρα
s=ρα+1+1

+

ρ
s=ρα+1


(e−2Tαk2s − e−2Tα+1k2s )

 1
2

.
Q

√
ρ


1 + ρQ−3 + 1 .

Q
√
ρ
(1 +


ρQ−3).

Thus we finish the proof. �

Recall that the definition of the remainder terms as found in Eqs. (4.3). A key step in our norm inflation argument relies
on controlling y and verifying it remains small.

Lemma 4.7. For α ∈ {0, 1, 2, . . . , β}, T > Tβ = k−2
0 , Tβ < Q−2 and ρ ≫ Q 6

∥y(T )∥L2(0,T ;L2(T2)) .

T

1
2 + ρ−1


+ Q Q 3

+2

k−1
0 + ρ−

1
2


.

Proof. With the help of the previous lemmas including the continuity of the linear and bilinear operators as given in
Lemma 3.3, we establish some important bounds on the terms from (4.3).

∥B(u2, v1 + v2)∥L2(0,Tα+1;L2(T2))

. ∥u2∥L2(0,Tα+1;L2(T2))


∥v1 + v2∥L∞(0,Tα+1;BMO(T2)) + ∥∇v1 + ∇v2∥L2(0,Tα+1;BMO(T2))


.

Q
1
2 ρ−1  

Lemma 4.4

+ T
1
2
α+1Q

1
2  

Lemma 4.3


 Q−

1
2

Lemma 4.2

+ T
1
2
α+1Qρ

−
1
2  

Lemma 4.5

 .

ρ−1

+ T
1
2
β


;

∥B(u1, v2)∥L2(0,Tα+1;L2(T2)) . ∥u1∥L2(0,Tα+1;L2(T2))


∥v2∥L∞(0,Tα+1;BMO(T2)) + ∥∇v2∥L2(0,Tα+1;BMO(T2))


. Q

Lemma 4.2

T
1
2
α+1Qρ

−
1
2  

Lemma 4.5

. T
1
2
β ;

∥B(u2 − u1, z)∥L2(0,Tα+1;L2(T2))

. ∥u2 − u1∥L2(0,Tα ;L2(T2))


∥z∥L∞(0,Tα ;BMO(T2)) + ∥∇z∥L2(0,Tα ;BMO(T2))


+ ∥u2 − u1∥L2(Tα ,Tα+1;L2(T2))


∥z∥L∞(Tα ,Tα+1;BMO(T2)) + ∥∇z∥L2(Tα ,Tα+1;BMO(T2))


.

T
1
2
α Q

1
2 + Q

1
2 ρ−1

+ Q  
Lemmas 4.2–4.4

∥z∥L∞(0,Tα ;BMO(T2)) + ∥∇z∥L2(0,Tα ;BMO(T2))



+

T
1
2
α+1Q

1
2 + Q

1
2 ρ−1  

Lemmas 4.2 and 4.4,

+ Q−
1
2

Lemma 4.6

∥z∥L∞(0,Tα+1;BMO(T2)) + ∥∇z∥L2(0,Tα+1;BMO(T2))


. Q


∥z∥L∞(0,Tα ;BMO(T2)) + ∥∇z∥L2(0,Tα ;BMO(T2))


+ Q−

1
2


∥z∥L∞(0,Tα+1;BMO(T2)) + ∥∇z∥L2(0,Tα+1;BMO(T2))


;

∥B(y, v1 + v2)∥L2(0,Tα+1;L2(T2))

. ∥y∥L2(0,Tα+1;L2(T2))


∥v1 + v2∥L∞(0,Tα+1;BMO(T2)) + ∥∇v1 + ∇v2∥L2(0,Tα+1;BMO(T2))


. ∥y∥L2(0,Tα+1;L2(T2))

 Q−
1
2

Lemma 4.2

+ T
1
2
α+1Qρ

−
1
2  

Lemma 4.5

 . Q−
1
2 ∥y∥L2(0,Tα+1;L2(T2));



Author's personal copy

48 C. Deng, J. Villavert / Nonlinear Analysis 95 (2014) 38–49

∥B(y, z)∥L2(0,Tα+1;L2(T2)) . ∥y∥L2(0,Tα+1;L2(T2))


∥z∥L∞(0,Tα+1;BMO(T2)) + ∥∇z∥L2(0,Tα+1;BMO(T2))


;

∥z∥L∞(0,Tα+1;BMO(T2)) + ∥∇z∥L2(0,Tα+1;BMO(T2)) . ∥y∥L2(0,Tα+1;L2(T2)) + ∥u2∥L2(0,Tα+1;L2(T2))

. ∥y∥L2(0,Tα+1;L2(T2)) + T
1
2
α+1Q

1
2 + Q

1
2 ρ−1  

Lemmas 4.3 and 4.4

. ∥y∥L2(0,Tα+1;L2(T2)) + Q
1
2


T

1
2
β + ρ−1


.

For a suitable choice of c < 1 and for any α ∈ {0, 1, . . . , β}, we set

Aα+1 := ∥y∥L2(0,Tα+1;L2(T2)) + c∥z∥L∞(0,Tα+1;BMO(T2)) + c∥∇z∥L2(0,Tα+1;BMO(T2)),

and combine the above estimates to obtain

Aα+1 . Q
1
2


T

1
2
α+1 + ρ−1


+ Q


∥z∥L∞(0,Tα ;BMO(T2)) + ∥∇z∥L2(0,Tα ;BMO(T2))


+Q−

1
2


∥z∥L∞(0,Tα+1;BMO(T2)) + ∥∇z∥L2(0,Tα+1;BMO(T2))


+


Q−

1
2 + c


∥y∥L2(0,Tα+1;L2(T2))

+ ∥y∥L2(0,Tα+1;L2(T2))


∥z∥L∞(0,Tα+1;BMO(T2)) + ∥∇z∥L2(0,Tα+1;BMO(T2))


. (4.36)

This implies that

Aα+1 .

T

1
2
β + ρ−1


+ QAα + A2

α+1. (4.37)

Therefore, (4.34), (4.37) and an iteration argument imply

A0 . Qρ−
1
2 , Aβ . Q β+1


T

1
2
β + ρ−

1
2


,

and hence,

∥y∥L2(0,Tβ ;L2(T2)) + c∥z∥L∞(0,Tβ ;BMO(T2)) + c∥∇z∥L2(0,Tβ ;BMO(T2)) . Q Q 3
+1

k−1
0 + ρ−

1
2


. (4.38)

If we iterate (4.37) and (4.38), we have that for T > Tβ = k−2
0 ,

∥y∥L2(0,T ;L2(T2)) + c∥z∥L∞(0,T ;BMO(T2)) + c∥∇z∥L2(0,T ;BMO(T2))

. Q
3
2


T

1
2 + ρ−1


+ QAβ .


T

1
2 + ρ−1


+ Q Q 3

+2

k−1
0 + ρ−

1
2


. (4.39)

This completes the proof of this lemma. �

Combining the bilinear estimates for B(u, v), the linear estimates for L(u), and (4.39), we prove that

∥y(T )∥Ḟ−1,2
2 (T2)

.

T

1
2 + ρ−1


+ Q Q 3

+3

k−1
0 + ρ−

1
2


. (4.40)

This completes the steps required in proving Theorem 2.2.
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