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Let M be a smooth closed curve (n = 1) or hypersurface (n > 2) in the hyperbolic
space H"T!, with principal curvatures denoted by k; := &, Ka, ..., K,. There are three
convexity conditions for M. It is said to be

e convex, if k; >0 foralli=1,...,n;

e h-convex, if k; > 1foralli=1,...,n;

e of positive sectional curvature (n > 2), if xk;x; > 1 for all integers 1 <14 # j <n.

The authors first study x* type area-preserving and length-preserving curvature flows
of smooth closed convex curves in the hyperbolic plane H?. Motivated by previous work
on curve flows [D.-H. Tsai and X.-L. Wang, Calc. Var. Partial Differential Equations 54
(2015), no. 4, 3603-3622; MR3426088]|, they show that these two types of flows exist
globally and evolve convex curves to geodesic circles exponentially in C'*° topology. This
theorem strengthens a part (the n =1 case) of Theorem 1.2 in [B. Andrews and Y. Wei,
Geom. Funct. Anal. 28 (2018), no. 5, 1183-1208; MR3856791], where the initial curve is
assumed to be h-convex.

The authors also consider the volume-preserving Gauss curvature flow of smooth
closed convex surfaces in H?. It is proved that the evolving surface remains convex
and smoothly converges to a geodesic sphere exponentially as t — oo. This result is a
generalization of the n = 2 case of Theorem 1.2 in [B. Andrews, X.Z. Chen and Y. Wei,
J. Eur. Math. Soc. (JEMS) 23 (2021), no. 7, 2467-2509; MR4269419], where the initial
surface is of positive sectional curvature.

In the proofs of both above-mentioned results, a technique by K.-S. Chou [Comm.
Pure Appl. Math. 38 (1985), no. 6, 867-882; MR0812353] plays an important role in
obtaining uniform bounds on curvatures. Laiyuan Gao
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