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Let M be a smooth closed curve (n = 1) or hypersurface (n ≥ 2) in the hyperbolic
space Hn+1, with principal curvatures denoted by κ1 := κ, κ2, . . . , κn. There are three
convexity conditions for M . It is said to be
• convex, if κi > 0 for all i= 1, . . . , n;
• h-convex, if κi ≥ 1 for all i= 1, . . . , n;
• of positive sectional curvature (n≥ 2), if κiκj > 1 for all integers 1≤ i 6= j ≤ n.
The authors first study κα type area-preserving and length-preserving curvature flows

of smooth closed convex curves in the hyperbolic plane H2. Motivated by previous work
on curve flows [D.-H. Tsai and X.-L. Wang, Calc. Var. Partial Differential Equations 54

(2015), no. 4, 3603–3622; MR3426088], they show that these two types of flows exist
globally and evolve convex curves to geodesic circles exponentially in C∞ topology. This
theorem strengthens a part (the n= 1 case) of Theorem 1.2 in [B. Andrews and Y. Wei,
Geom. Funct. Anal. 28 (2018), no. 5, 1183–1208; MR3856791], where the initial curve is
assumed to be h-convex.

The authors also consider the volume-preserving Gauss curvature flow of smooth
closed convex surfaces in H3. It is proved that the evolving surface remains convex
and smoothly converges to a geodesic sphere exponentially as t→∞. This result is a
generalization of the n= 2 case of Theorem 1.2 in [B. Andrews, X. Z. Chen and Y. Wei,
J. Eur. Math. Soc. (JEMS) 23 (2021), no. 7, 2467–2509; MR4269419], where the initial
surface is of positive sectional curvature.

In the proofs of both above-mentioned results, a technique by K.-S. Chou [Comm.
Pure Appl. Math. 38 (1985), no. 6, 867–882; MR0812353] plays an important role in
obtaining uniform bounds on curvatures. Laiyuan Gao
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