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Abstract

A fully discrete difference scheme is derived for a diffusion-wave system by introducing two new variables to
transform the original equation into a low order system of equations. The solvability, stability and L ., convergence
are proved by the energy method. Similar results are provided for a slow diffusion system. A numerical example
demonstrates the theoretical results.
© 2005 IMACS. Published by Elsevier B.V. All rights reserved.
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1. Introduction

This article is concerned with a numerical solution to a fractional diffusion-wave (FDW) system
subjected to a non-homogeneous field. A fractional diffusion-wave equation is a linear integro-partial
differential equation obtained from the classical diffusion or wave equation by replacing the first- or
second-order time derivative by a fractional derivative of order « > 0 [13]. Oldham and Spanier [20]
considered a fractional diffusion equation that contains first order derivative in space and half order deriv-
ative in time. Nigmatullin [18,19] pointed out that many of the universal electromagnetic, acoustic, and
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mechanical responses can be modelled accurately using the FDW equations. Wess [24] and Schneider
and Wess [22] presented solutions of FDW equations in terms of Fox’s H-functions. Fujita [5] pre-
sented the existence and the uniqueness of the solution of the Cauchy problem of the following type:
0%u(x,1)/0t* = dPu(x,1)/9x?, 1 < a, B < 2. The results presented offer an interpretation to phenom-
ena between the heat equation (¢« =1, B8 = 2) and the wave equation (¢ =2, B = 2). Fujita [6,7]
considered integro-differential equations which exhibit heat diffusion and wave propagation properties.
He also demonstrated that certain operators associated with the equations can be decomposed and the
solutions can be written as the sum of the solutions of the decomposed operators.

Ginoaetal. [8] presented a fractional diffusion equation describing relaxation phenomena in viscoelas-
tic materials. Mbodje and Montseny [16] investigated the existence, uniqueness, and asymptotic decay
of the wave equation with fractional derivative feedback, and showed that the method developed can be
easily adapted to a wide class of problems involving fractional derivative or integral operators of the time
variable.

Mainardi [11,12] used Laplace transform method to obtain the fundamental solution of the FDW
equations and expressed them in terms of auxiliary function M(z, ), where z = |x|/t? is the similar-
ity variable. He further showed that such a function is an entire function of Wright type. Agrawal [1,2]
presented a general solution to FDW equations containing fourth order space derivative defined in un-
bounded and bounded domains.

Metzler and Klafter [17] used Fourier-Laplace transform and the separation of variables to solve the
fractional diffusion equation for absorbing and reflecting boundary value problems. Helfer [9] presented
the solution of a fractional diffusion problem in terms of H-functions. Mainardi et al. [14] presented the
fundamental solution (Green function) for the space—time fractional diffusion equation, which is obtained
from the standard diffusion equation by replacing the second-order space derivative with a Riesz—Feller
derivative of order « € (0, 2] and skewness 6 (]6] < min{a, 2 — «}), and the first-order time derivative
with a fractional derivative of order 8 € (0, 2]. They also presented explicit formulae for various functions
in terms of parameters «, 6, and 8.

Agrawal [3] used the method of separation of variables to identify the eigenfunctions and to reduce
the differential equation of an FDW into a set of infinite equations each of which describes the dynamics
of an eigenfunction. A Laplace transform technique is used to obtain the fractional Green’s function and
a Duhamel integral type expression for the system’s response.

Compared with the considerable work on the theoretical analysis, only a little work has been done
on the numerical method. Sanz-Serna [21] presented a temporal semi-discrete algorithm and proved the
one order convergence. The linear equation investigated by him could be considered as a 3/2 order time-
fractional diffusion-wave equation. Same problems are investigated by Lopez-Marcos [10] and Tang [23].
A backward-Euler scheme and a Crank—Nicolson scheme are presented in [10] and [23], respectively.
The stability and convergence are obtained. Bechelova [4] proposed a difference scheme for the mixed
boundary value problem of an @ (0 < o < 1) order time fractional diffusion equation (a slow diffusion
system) and proved the O(z® + 1?) order conditional convergence in the uniform metric by the maximum
principle.

In this article, we give a fully discrete difference scheme for the FDW equation and prove that the
difference scheme is uniquely solvable, unconditionally stable and convergent in L., norm. The conver-
gence order is O(z3~* + h?).



Z.-Z. Sun, X. Wu / Applied Numerical Mathematics 56 (2006) 193-209 195

Consider the FDW equation [3]

10%  3%u 1

- - 4 = <x < -

o 8x2+Kf(x’t)’ 0<x<L,t>0 (1.2)
along with the initial conditions

du(x,0

u(x,0) = ¢ (x), ”(;t )y, o<x<L (12)
and the boundary conditions

u@©,0)=0, wu(L,t)=0, >0, (1.3

where ¢ and K are constants of dimensions Length®Time* and Length?, x € [0, L] and ¢ > 0 are space
and time variables, ¢(0) = ¢ (L) =0, u = u(x, ) and f(x, t) are the field variables, and

t
0%u 1 %u(x,s) ds
= , l<a<?2
e T'2—oa) 9s2  (t—s)ot
0

with T' denoting the gamma function. When « = 1, Eq. (1.1) represents a diffusion equation, ¢ and
f(x,t) are called the diffusion coefficient and the source term, respectively. When o =2, Eq. (1.1)
represents a wave equation, ¢ and f(x, ¢t) denote the square of the wave velocity and an external force
field, respectively. For 1 < o < 2 the fractional equation in (1.1) is expected to interpolate the diffusion
equation and the wave equation, thus in this case it could be referred to as the time-fractional diffusion-
wave equation. We have to point out that for 1 < « < 2 both the initial conditions in (1.2) are necessary
as the wave equation (o« = 2) but for 0 < o < 1 only initial condition u(x, 0) = ¢ (x) can be imposed as
the diffusion equation (¢ = 1) (see, e.g., [15,3]).

Let w, = {x; | 0 <i < M} is a uniform mesh of the interval [0, L], where x; =ih, 0 <i < M with
h=L/M.Letw, ={t, |n >0}, wheret, =nt, v >0.

Suppose u = {u! | 0 <i < M, n >0} isagrid function on w;, x w.. Introduce the following notations:

L, 1 i, 1
ul M = S(ul +ulh, Sul M = = (uf —ufh),
2 T
n 1 n n 2.n 1 n n
Sxlli_1)p = E(“z - uifl)’ Seui = E(axuiﬂ/z - (quifl/Z)’
where /' /? is an average of u at the points (x;, 7,) and (x;, z,_1) and 8,u /% is the difference quotient

of u based on these two points; 8,u;_, , is the first-order difference quotient of u on the points (x;, 7,) and
(xi_1,t2), and 82u’" is the second-order difference quotient at the points (x;_1, ), (x;, ,) and (x;41, ).
We also define

M
"] _oLniXM |, | = ; (G 1/2
In addition, if uj =0 and u}, = 0, we have
VL
o < = [8c"]- (14)
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The difference scheme we will consider for (1.1)—(1.3) is as follows:

n—1
1 1 -1/2 k—1/2 n—1/2 1 -1/2
[aoa,u;’ P = @i = andag " —an i | =85+

cI'2—aw) T pr
1<i<M-1n>1, (1.5)
W=¢;, 0<i<M, (1.6)
ug=0, u), =0 n=1, a7
where
141 q 1 9
t 2—a 2—a L 2—a 2—a
= = 1 — (¢ = [+1 —1 , [>=0, 1.8
a /t“—l 2—05[(1“) (t)* ] 2—a[(+ ) ] (1.8)
7]
and

n— [n tn— .
bi=d(), O0<Ki<M; Yi=v(), f “2=f(xi, +2 1>, 1<i<M-1n>1

It is easy to know that

2—a
ap = - , a>apy, 120, (1.9)
2—«
and
n—1
Z(an—k—l —Qy_k)=do—ay-1, Nn=2. (1.10)
k=1

At each time level, (1.5)—(1.7) is a tridiagonal system of linear algebraic equations, which can be
solved by the double sweep method (Thomas algorithm). In the following, for simplicity, we suppose
that problem (1.1)~(1.3) has solution u(x, 7) € C¢3([0, L] x [0, 00)).

The remainder of the article is arranged as follows. In Section 2, the difference scheme (1.5)-(1.7) is
derived by introducing two new variables and transforming the original equation (1.1) into a low order
system of equations. In Section 3, the main results are proved, which are Theorems 3.2 and 3.3. In Sec-
tion 4, similar results are presented for a slow diffusion system. Section 5 provides a numerical example
to demonstrate the theoretical results.

2. Thederivation of the difference scheme
For the derivation of the difference scheme, we need the following lemmas.

Lemma2.l. Forn >1and f =kt,0 < k < n, we have

n U
0< ) / {(tn —0)*" - [t N tk—l)z_a:| } dr
T T
k=1

T k-1

2—q 23—a l-a 33—«
<[  t3oq (F2 )} '
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Proof. Let g(¢) = (t, — 1)*~%, then

. - 1
- 1g(rk>+t"r—tg(zk_1>] = 58" @) — 1 — 1 9)

T

g) — [

1
= 5(2 —a)(a =), — &)t — )t —tr-1) 20,
where & € (t_1, 1), t € (tr_1, t;). From the above inequality, we have

n—2 %

/ {g(t) - [t e+ Eg(tk_o] } dr
T T

-1

k=1

n—2 1
-3 / 2@ —a)(e — 1ty — &)~ — Dt — 1)

k=1

1 n—2 T
<GC-aE@-DY -1 [6-ne-n .
k=1

Tk—1

Since f[]i’il (tx — 1)(t — t,_1) dt = 73/6, we obtain

§ /tk{g(t)—[

Tt

t— 1t t, —1t
o) + — g(m)”dt
T T

In—1

1 n2 1
< ZR-o@- 17? k:Zlan —1) < R - 1)7? / (t, — 1) dt

1

1 —o —a 2 — —o
=5 Q=0T =t ) = (=) <
On the other hand,
n I
t—the e —1t
) / {g(f) - [ Tk “g(0) + kTg(tk—l)]}dt
k=”7ltk,1

In

1
- / gy di — [§g<rn_z> + g(tn_l)}r

th—2

tn
1
= /(tn - t)z_a dr — |:§(tn - tn—Z)Z_a + (tn - tn—l)z_a]f

th—2

23—0t
= [3 - (1+21_“)i|r3_“.

—

197

(2.1)

(2.2)



198 Z.-Z. Sun, X. Wu / Applied Numerical Mathematics 56 (2006) 193-209

The lemma follows from (2.1) and (2.2):

> / {g(t)— [t_f‘lg(rmt%tg(rk_o“dr
k=1

Tl
n—2 n 3
t—1t_ I —t
= (Z+ > )/{g(r)—[ : 1g<tk>+"—g<rkl>]}dt
T T
k=1 k=n—1 o1
2—«o 28—«
< _ -« 3—0('
\|: 12 +3—a (1+2 ):|T -

Lemma 2.2. Suppose g(1) € C?[0, t,,]. Then

In

: dr o) —ghy) [ i
/ T kX_; T / (ty — )=~

0

3—«

1 [2—a 2%
< _ l-a "
S 2—a|: o T3, (1+2 )]021%@ ol
Proof. For simplicity, denote
tl‘l

N dz B  g(t) — g(tk-1) [ dr
A= / g) (ty — 1)1 T / (tn — )%
0 fk—1

k=1

Using Taylor expansion with integral remainder, we have

_ B l t 179
gt — 8() = 8lt-) = ;|: / g (s)(s — tr_1)ds — fg”(s)(tk —5) ds:|,

T
-1 t
which yields
. t)— gt 1] d
) — g(f— t
A= f[g/(t)_g k tg k-1 Lt &
k=ltk,1 n
n Ik t tr
! 4 ” dr
=—Z / /g (S)(S—lkl)ds—/g (S)(lk—s)ds —.

‘ (tn - t)a

k=1p"0 Lyy s

Exchanging the order of integration, we get

A=

Tt

173
l n _ B _
2 Z / {(tn ) — [s o1 (ty — 1)* ™ + % s(tn - tk—1)2a] }g”(s) ds.
—a = T T
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Applying Lemma 2.1, we obtain the result:

|A|\—Zf{(t —s>“—[s_ L4, — 12

— (t, — tkl)z_“:“ |g”(s)| ds

afo’l‘?i‘tn‘gm)'Z / {“ e [S_ o — 107 s(rn—rkl)z‘“]}ds

- 1 2—oc+23_°‘
S2—al 12 3—«

— (1 + 21a)j| Orgn[ag)in|g//(t)|r3fa_ 0

Lemma 2.3. Suppose g(t) € C?[0, #,]. Then

In

) dr 1 "
/ 80 1~ ¢ | @08 () - Y (i1 — @)@ (1) — ay-18(10)
0

k=1

1 2-0[ 23_0[ l—«a " 33—«
<2_a[ 1 +3_a—(1+2 )} max |g"(1)|t°7%,

where ¢; is defined in (1.8) and 1 < o < 2.

KIS

Proof. Observing Lemma 2.2, it suffices to verify

Z g(t) — g(rk 0 1 Z’“
(t — t)a 1 aOg(tn) - (an—k—l - an—k)g(tk) - an—lg(IO) .
k=1

k=1
In fact,
Zg(tk)—g(tk 1)/
k=1 (tn _t)a '
— _ 1
_y 8 =8ty 5 [ — (1) Zan e(8(t) — g(t-1))

k=1 v -« U=

1

;[ 08ty )—Z(an 1 — @ )g(0) — ay 1g(to)}

k=1

This completes the proof. O

Let

v(x, 1) = 8u§;’ 2 (2.3)
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and

1) = 1 fav(x,s) ds
U= ") 9s (1 syl
0

Then (1.1) becomes
%u(x,t)
ox 2
Define the grid functions

—w(x,t) =
c

—f(

Uin:u(xl"tn)v ‘/in:v(xl'vtn)’ Wl-n:l,U(x,',tn), 0<1<M, n>0'

Using Taylor expansion, it follows from (2.3) and (2.5) that

n—1/2 n 1/2 n— 1/2

V.

1

=, U; + (r1);

and

1 n— n— 1 n— n—
EW' 1/2 82U 1/2+?fi 1/2+(r2)i 1/2,

i
and there exists a constant ¢; such that
|r)f 7 < ear?
and
|r2)! 2| < er (22 4 h?).

Based on Lemma 2.3, we have

t)l
0 1 /‘av(x,-,t) dr
W =
" TR—-) ot (t, —t)e 1
0

n—1
1 1
= - Vi — n—k—1 — Un— V‘k_ n— V'O o) 3o s > 0.
r,(2_0[)1_|:6101 kgzl(a k=1 — an-i) V" — ap-1 ,:|+ (%), n

Consequently,

u/‘"_]-/2 — E(Win + Win—l)

! 2
n—1
#1 aoV" 1/2 Z(a i—a k)vk 2 _ 1V ¥ (rg )n 1/2
Fr—o)t — " " "

and there exists a constant ¢, such that

|(7’3) | et

(2.4)

(2.5)

(2.6)

2.7)

(2.8)

(2.9)

(2.10)

(2.11)
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Substituting (2.6) into (2.10), we have

1 1 n—1
Wfl—l/Z - - = S Uﬂ—l/Z i 1 — 1) U.k—l/Z —a,_ V'O
; F(Z_a)T[QOtl ;(a k=1 — An—i)8; U; an—1V,
1 1 n—1
n—1/2 k—1/2 n—1/2
- n=1/2 _ k] — : =12, 2.12
T o: [ao(m, ;(a k1 — n i) (r1); } + (r3); (2.12)
Then substituting above result into (2.7) and noticing ViO =v(x;,0) =¥ (x;), we obtain
1 1 n—1
T~ N ) U'n—l/Z - n—k—1— Un— J U'k_l/z — Un— i
cF(2—o¢)r|:a0t ; ;m 1 — a8, U] a1 ¥ (x;)
_ 1 .- _
=52U" 1/2+?f,»" V2L RTYR 1<i<M -1, n>1, (2.13)
where
1 11 =
RYV2Z_ L n-1/2 _ 1 — k=1/2 n—1/2 n=1/2.
; ; {—F G—a): [aom), ;w 1= @)y |+ )]+ ()]
According (1.9), (1.10), (2.8), (2.9) and (2.11), we have
— 1 201
R < = h? +%79). 2.14
|R™7 c[(Z—a)F(Z—a)+CZ+CCl]( +1°79) (2.14)
In addition, from (1.2), (1.3), we have
UP=¢(x)., 0<i<M (2.15)
and
U; =0, Uy=0 n=>Ll (2.16)

Observing (2.13) and (2.15), (2.16), it is natural to construct the difference scheme (1.5)—(1.7) for the
problem (1.1)-(1.3).
3. Analysisof the difference scheme

Before we prove the solvability, stability and convergence, we give the following lemmas.

Lemma3.1. For any G = {G4, G, G3, ...} and g, we have

N n—1 j— N 2—«
tN 2 tN 2
Z|:aoGn — Z(an—k—l —a,1)G — an—lq:| G2 2 v Z G, — 22— a)q ’
n=1 k=1 n=1
N=123, ...,

where g; is defined in (1.8).
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Proof.
N n—1
> |:610Gn — ) (nt1— @y i)Gr — an—l‘]j| G
n=1 k=1
N N n-1
=Z“OG5_Z Y (an-t-1— an-1)GiG, _Zan 194G
N N 2Nk i 1
ZHOG __ZZ(an k=1 — dp— k)(Gk+G2 __Zan 19 +G)
n=1 n=2 k=1 n=1
N N n-1 N n-1
= aOGZ__ZZ(ankl_an )G, __ZZ(ankl_an G}
n=1 n=2 k=1 n=2 k=1
1 , 18 ,
- 5 Zan—lq - 5 Zan—lGn-
n=1 n=1

Exchanging the summation order of the third term in the last inequality, we obtain

N n—1
Z |:00Gn - Z(an—k—l —ay—1)Gr — an—lq:| G,

n=1 k=1
N
> 4Gl - Z(ao—an 1)02——2(010 an- k)Gk——Zan 197 Zan 1G?
n=1 n=2 n=1
:}iaN—nGz_lian 1q aN 1ZG2 N_a 2
2 Oy 20-a)"

—t 2 e 7,
v TZG 20 —a)?

where we have used that {a;} is a strictly decreasing sequence and

IN f41
2—«
t

N _ l-« 1-«
Zan 1_Zan_/$a1 7 o al_/x dx >t 7't O

)

Lemma 3.2. Suppose {u!'} is the solution of

-1
1 1 -1 S k—1/2 -1/2 -1/2
|:a08tun /2 Z(an—k—l - an—k)(stui /z_ an-14i | = 5,%”7 / + Pin / s

1<i<M-1,n=12, ..., (3.1)
P=¢i. 0<i<M, (3.2)
ug=0, uy =0, k=12 .... (3.3)
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We have
) t2 o M-1 n M-1 ,
S < |8,u® Y g2+ el —aye? Ry (PR,
e O I ECEE 9 DY o
nzl (3.4)
Proof. Multiplying (3.1) by htd,u;~ /2 and summing up for i from 1 to M — 1 and for n from 1 to m,
we obtain
1 M-1 m n—1
h 5”1/ o _nSkl/_nlanl/Z
TC—a) ;{Z[a (U kzl(a k—1— An—k )0l an-19; |0:u
:IZ|:hZ 8o %) (82u! ) :|+hZ|:TZ (8,ul %) P”_1/21|. (3.5)
n=1 n=1

Using Lemma 3.1, we have

M-1 m n—1
'y { z[aoa,uy-l/z ST q}/}

k=1

Lia Ny 122 I
2h. {Ztm TZ(‘St”i ) 2(2—0[)%

n=1

M-1
u" 1/2 2

Applying (3.2) and (3 3), we have 8,u) "/ =0and 8,u;; /% = 0. Consequently,

Ti{hz n 1/2 82 n— l/2i|
m M n . 1 m M M ~
S DTS HIVECI B IS IR S S VER

o n=lli=l i=1
_E(’(qum’ — |6xu | ) (37)
In addition,
M-I m
h Z |:1' Z(gtui?*lﬂ) Pinl/2:|
i=1 =1
3 1 1 2 1 )
- 1 o r‘l—1/2 = _ o1 fl—1/2
= i=1 T;[CF(Z )2 (B )" 2CF(2 )ty H(P') ]

1 . o m M-1 n 1/2
<m2’” tZH(St V2|4 2 cF(Z—a)t 1IZ|:hZ (3.8)

n=1 i=1
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Substituting (3.6)—(3.8) into (3.5), we obtain

1 n—1/2
F(T{ el g Zq’]

N m2_ 0 n—1/2
S0 0 e S a2

+- r(z Z|:hz P }

n=1
or
—a M-1 n M-1
\qun|2 < }5)(”0}2_’_ tf h Zq-z—l-cF(Z—a)t,i‘_le h (P‘k—1/2)2 ’
c—a)'2—a) Py ! —| = i

n>1.

This completes the proof. O
Theorem 3.1. The difference scheme (1.5)—(1.7) is uniquely solvable.

Proof. Since (1.5)—(1.7) is a system of linear algebraic equations at each time level, it suffices to show
that the corresponding homogeneous equations:

n—1
1 1 n-1/2 k—1/2 2 n—1/2
J n— - Un— ) =dcu; ’
TC—a)r [ao U E (@n—k-1 — An—k)d:u; U

k=1
1<i<M-1,n>1, (3.9
=0, 0<i<M, (3.10)
ug=0, uy =0, n=>1, (3.11)

have only zero solution. Using Lemma 3.2, we have
‘qu”| =0, n=123,....

Combining the above equality with (3.11) arrives at

u'=0, 0<i<M,n=>1 O

1

Theorem 3.2. Let {u | 0 <i < M, n > 0} be the solution of the difference scheme (1.5)-(1.7). Then, we
have

t2 o M-1

. cr(z a) - -
[ | < |3, + T wrasat vt ' Z[ Z £ }
i=1

i=1

n>1.

Proof. The result needed can be easily obtained from Lemma 3.2. O
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Theorem 3.3. Let (1.1)—(1.3) have solution u(x, t) € c;‘;;”([o, LI x[0,T]h and {u? |0<i <M, n>0}

be the solution of the difference scheme (1.5)—(1.7). Then, for nt < T, we have

L 2c1 T°r2—-ow) , , 3
max il "N = h @)
T2 |u(x ) —uf| 2|:(2—a)F(2—oz)+c2+CCl}/ ; (h* +7°7%)

Proof. Denote

u; =U"—u;, 0<i<M,n=0.
Subtracting (1.5)-(1.7) from (2.13), (2.15), (2.16), respectively, we obtain the error equations

1
11 e ¢ _
7;{%&%7 Y= ke — an8,8; 1/2} = 8%+ R
k=1

1<i<M—-1,n>1,
=0, 0<i<M,
=0, @,=0 n>1

Using Lemma 3.2, we have

|8xﬁ"‘2<cl"(2—o{)t, rZ|: Z kl/z i|, n>1.

i=1

Inserting (2.14) into the right hand of the above inequality, we get

3 21 Lt*T2—-a) , , 3—
Sy | < e ‘), n=1l
| u | |:(2—a)F(2—a)+62+661:| c ( +7 ) n

Noticing (1.4), we have the result:

- L 21 TTQR—a),, 3.4
7. < 5] it errean ]y TTCED o), whene <

4. A dow diffusion system

Consider the slow diffusion equation [3,4]

Lotu _ % 1 0<x<L.i>0
- = 5 e X, ) XX ) >
cdt* 9x?2 K

along with the initial condition

ux,00=9¢x), 0<x<L

and the boundary conditions

u@©,1)=0, wu(L,t)=0, >0,

O

(4.1)

4.2)

(4.3)
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where

t
0%u 1 /au(x,s) ds
- = , O<a<l.
e TI'l—aw) as  (t —s)™
0

Let o be replaced by « + 1 in Lemma 2.3 and in Lemma 3.1, we have

Lemma 4.1. Suppose g(1) € C?[0, t,,]. Then

In 1 n—1
/g ( )( I)O‘ ; bOg(tn) - Z(bn—k—l - bn—k)g(tk> - bn—lg(IO)
k=1

0

1 [l—a 2%
< —(14+27%)| max |g"(t ,
1—a|: ot (4 )} X g @]
where 0 < a < 1 and
fl+1d 1 1
t T ¢
b= —=—[@t.)"*— @)= [+ -], [>0. 4.4
1 /t“ 1—oc[(l+1) ()] 1—a[( +1) ] (4.4)

7]

Lemmad4.2. For any G = {G1, G, G3, ...} and g, we have

N n—1 (o N 704
boGn— Y (byi—1—byi)Gi — b, /L g?, N=1,2,3,...,
Z|: 0 Z( k-1 KNG — 16]} > 2; 2(1_a)

n=1 k=1

where 0 <« < 1 and b; is defined in (4.4).

Using Lemma 4.1 and similarly to the derivation of the difference scheme (1.5)-(1.7) for the problem
(1.1)—(1.3) in Section 2, we may construct the following difference scheme for (4.1)—(4.3):

1 1 t 1
- |:b0u7 - Z(bnfkfl — by )uk — bnlu?i| =82u" + ?fi",

1<i<M-1,n>1, (4.5)
w=¢, 0<i<M, (4.6)
ug=0, u), =0, n=1 4.7

Multiplying (4.5) by htu?, using Lemma 4.2 and similarly to the analysis in Section 3, we can prove
the following theorem:

Theorem 4.1. The difference scheme (4.5)—(4.7) is uniquely solvable and the following estimate is valid:

tla

r(1 -
Sl < gt 2+ T

k=1L =1
n>1 (4.8)
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Furthermore, if (4.1)—(4.3) has solution u(x, t) € c;‘;?([o, L] x [0, TY), then the solution of the difference
scheme (4.5)—(4.7) converges to the solution of the problem (4.1)—(4.3) with the convergence order of
O(h? 4+ 27%) in Lo-norm in the sense that

T ZH(U - u)kuio < C(h2 + rz_”‘), whennt < T,
k=1

where C is a constant independent of z and .

5. Numerical example

In order to demonstrate the effectiveness of our difference scheme, we compute the following problem:

E;(%tZ%-i-sin(nx), 0<x<1 0<r<<1, (5.1

u(x,0)=0, %;()):0, 0<x <1, (5.2)

u(0,1)=0, u(l,r)=0, 0<r<l (5.3)
The exact solution of the above problem is [3]

u(x,t) = %[1 — Eq(—m%)]sin(rx), (5.4)
where

o0 o

Ey(z) = kX_; m-

If « =3/2, then (5.4) can be expressed as follows:
o 2 a\2m—1 & 2 0\2m
u(x, 1) = % {%; (;T;"l—tlzi TR D (jlz[i;i’zi } sin(rx). (5.5)

Table 1
Some numerical results
M\ (x.1) (3.1 (2,1 (E5D) (E5D)
32 0.434346D—-01 0.802566D—01 0.104860D-+00 0.113500D+00
64 0.433077D-01 0.800222D—-01 0.104554D+00 0.113168D+00
128 0.432653D—-01 0.799438D—-01 0.104452D+00 0.113058D+00
256 0.432510D-01 0.799174D-01 0.104417D+00 0.113020D+00
512 0.432461D-01 0.799084D—-01 0.104405D+00 0.113008D-+00
1024 0.432445D-01 0.799054D—-01 0.104401D+00 0.113003D+00

Exact solution

0.432436D—-01

0.799037D—-01

0.104399D+-00

0.113001D+00
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Fig. 1. The curves of the errors of the finite solutions at r = 1.

Table 2
The maximum errors |lu — upz |loco
M lu — upelloo
32 0.4990405D—03
64 0.1675359D—-03
128 0.5674313D—-04
256 0.1940128D—-04
512 0.6689013D—05
1024 0.2321606D—05

Take « = 3/2, h =1t =1/M. Table 1 presents the numerical and exact solutions at some points for
different mesh sizes. Fig. 1 plots the curves of the errors of the difference solutions on the line r =1
for different mesh sizes. Table 2 gives the maximal errors of difference solutions at all mesh points for
different mesh sizes. In Table 2, the maximal error is defined as follows

{ |

It is clear that the finite difference solution is very accurate and converges quickly to the exact solution.
Suppose

||M - Mhr”oo = MmaxX

max |u(x,», t,) — u7|
1<n<M

0<i<M

llu — e lloo = ch?.

Then we have
—log |lu — up:|loo & —logc + p(—logh).

Using the data in Table 2 and with the help of MATLAB, we obtain linear fitting functions
—log|lu — uprlleo ~ 2.2476 + 1.5494(— log h).
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6. Conclusion

In this article, we present a difference scheme for the initial-boundary value problem of a diffusion-
wave equation. The solvability, stability and convergence are proved by the energy method. Similar
results are given for a slow diffusion system. A numerical example demonstrates the theoretical results.
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