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1. Introduction

During the past twodecades,more andmore attentionswere paid to numerical solutions of differential equations defined
on unbounded domains. For solving problems defined on the whole line and the related unbounded domains, we may use
the Hermite orthogonal approximation and the Hermite–Gauss interpolation. Guo [1], and Guo and Xu [2] developed the
spectral and pseudospectralmethods for nonlinear partial differential equations, by using the standardHermite polynomials
which are mutually orthogonal with the weight function e−x2 . Weideman [3] presented the related implementations. These
methods are also available, even if the approximated solutions grow like eαx

2
(α < 1

2 ) as |x| increases. However, the small
global numerical errors with the weight function e−x2 do not imply the small point-wise numerical errors for large |x|
automatically. Meanwhile, Funaro and Kavian [4] considered the spectral method for linear parabolic equations by using
the orthogonal system with the weight function eγ x

2
(γ > 0). Fok, Guo and Tang [5] applied a similar approach coupled

with finite difference approximation, to the simplified Fokker–Planck equation. Suchmethods are only suitable for problems
with solutions behaving like e−αx2(α > 1

2γ ) at infinity. On the other hand, Guo, Shen and Xu [6] provided the spectral and

pseudospectral methods for the Dirac equation with the solution behaving like (1 + x2)−
1
2 α(α > 1) at infinity, by using

the Hermite functions which are mutually orthogonal with the weight function 1. We also refer the readers to the work of
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Boyd [7,8], Ma, Sun and Tang [9], Ma and Zhao [10], and Xiang and Wang [11]. In many practical problems, the solutions
might behave like (1 + x2)

1
2 α for large |x|, α being certain real number. In these cases, it seems reasonable to adopt the

orthogonal approximation with the weight function like (1 + x2)−γ , γ > α +
1
2 .

In this paper, we propose a family of new generalized Hermite functions, which are mutually orthogonal with the
weight function (1 + x2)−γ , γ being any real number. We establish the basic results on the corresponding Hermite
orthogonal approximation and Hermite–Gauss interpolation. By adjusting the parameter γ suitably, such approximations
might simulate the asymptotic behaviors of approximated functions at infinity reasonably, and so play an important role
in the related Hermite spectral and pseudospectral methods for differential equations with various asymptotic behaviors
at infinity. As examples of applications, we provide the spectral schemes for a linear model problem and the sine–Gordon
equation, and prove their spectral accuracy in space. The numerical results demonstrate the effectiveness of the suggested
algorithms.

This paper is organized as follows. The next section is for preliminaries. In Section 3, we introduce the new generalized
Hermite orthogonal approximation and Hermite–Gauss interpolation. In Section 4, we propose the spectral schemes for two
model problems, and present some numerical results. The final section is for concluding remarks.

2. Preliminaries

In this section, we recall some results on the existing Hermite orthogonal approximation and Hermite–Gauss
interpolation.

Let Λ = {x | −∞ < x < ∞} and χ(x) be a certain weight function. For any integer r ≥ 0, we define the weighted
Sobolev space Hr

χ (Λ) in the usual way, with the inner product (·, ·)r,χ,Λ, the semi-norm | · |r,χ,Λ and the norm ∥ · ∥r,χ,Λ. In
particular, the inner product and the norm of L2χ (Λ) are denoted by (·, ·)χ,Λ and ∥ ·∥χ,Λ, respectively. We omit the subscript

χ in notations whenever χ(x) ≡ 1. For simplicity of statements, we denote dkv
dxk

by ∂kx v, etc.
Let Hl(x) be the standard Hermite polynomial of degree l. For any β > 0, the scaled Hermite functions are given by

Hβl (x) =
1

√
2ll!

e−
1
2 β

2x2Hl(βx), l ≥ 0.

They are the eigenfunctions of the following singular Sturm–Liouville problem,

e
1
2 β

2x2∂x


e−β2x2∂x


e

1
2 β

2x2v(x)


+ λ
β

l v(x) = 0, λ
β

l = 2β2l, l ≥ 0. (2.1)

Let δl,m be the Kronecker symbol. The set of all Hβl (x) is a complete L2(Λ)-orthogonal system, i.e.,
Λ

Hβl (x)H
β
m(x)dx =

√
π

β
δl,m. (2.2)

For any v ∈ L2(Λ), we have

v(x) =

∞
l=0

v
β

l H
β

l (x), (2.3)

with

v
β

l =
β

√
π


Λ

v(x)Hβl (x)dx.

Let

Q
β

N(Λ) = span{Hβl (x), 0 ≤ l ≤ N}.

The L2(Λ)-orthogonal projection PN,β,Λ : L2(Λ) → Q
β

N(Λ) is defined by

(PN,β,Λv − v, φ) = 0, ∀φ ∈ Q
β

N(Λ). (2.4)

For any integer r ≥ 0, we define the space

Hr
A,β(Λ) = {u | ∥u∥Hr

A,β (Λ)
< ∞},

equipped with the norm

∥u∥Hr
A,β (Λ)

=


r

k=0

(β4x2 + β2)
r−k
2 ∂kxu

2
Λ

 1
2

.

Throughout this paper, we denote by c a generic positive constant independent of any function, N and β . According to
Theorem 2.1 of [11], we have the following result.
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Lemma 2.1. If v ∈ Hr
A,β(Λ) and integers 0 ≤ k ≤ r, then

∥PN,β,Λv − v∥k,Λ ≤ c(β2N)
k−r
2 ∥v∥Hr

A,β (Λ)
. (2.5)

The above result with β = 1 was first given by Guo, Shen and Xu; see Theorem 2.3 of [6].
We now turn to the related Hermite–Gauss interpolation. Let σN,j and ωN,j be the nodes and the weights of the standard

Hermite–Gauss interpolation, 0 ≤ j ≤ N (cf. [2]). We take the nodes and the weights of the scaled Hermite–Gauss
interpolation as follows,

σ
β

N,j =
σN,j

β
, ω

β

N,j =
1
β
ωN,je

σ 2
N,j , 0 ≤ j ≤ N.

Accordingly, we introduce the following discrete inner product and norm,

(u, v)N,β,Λ =

N
j=0

u(σ βN,j)v(σ
β

N,j)ω
β

N,j, ∥v∥N,β,Λ = (v, v)
1
2
N,β,Λ.

For any φ ∈ Q
β
m(Λ) and ψ ∈ Q

β

2N+1−m(Λ), there exist the following polynomials,

φβ(x) = e
1
2 x

2
φ


x
β


, ψβ(x) = e

1
2 x

2
ψ


x
β


.

With the aid of exactness of the standard Hermite–Gauss numerical quadrature, a careful calculation shows that

(φ, ψ)N,β,Λ =

N
j=0

φ(σ
β

N,j)ψ(σ
β

N,j)ω
β

N,j

=
1
β

N
j=0

φβ(σN,j)ψ
β(σN,j)ωN,j

=
1
β


Λ

φβ(x)ψβ(x)e−x2dx

=
1
β


Λ

φ


x
β


ψ


x
β


dx = (φ, ψ)Λ, ∀φ ∈ Qβ

m(Λ), ψ ∈ Q
β

2N+1−m(Λ). (2.6)

For any v ∈ C(Λ), the corresponding Hermite–Gauss interpolation IN,β,Λv ∈ Q
β

N(Λ) is determined uniquely by

IN,β,Λv(σ
β

N,j) = v(σ
β

N,j), 0 ≤ j ≤ N. (2.7)

For describing the approximation error of IN,β,Λv, we need some preparation. First, according to Lemma 2.1 of [11], we
know that for any φ ∈ Q

β

N(Λ),

∥∂kxφ∥Λ ≤ cβkN
k
2 ∥φ∥Λ. (2.8)

Next, we can follow the same line as the proof of Lemma 3.1 of [6] to verify that for any v ∈ H1(Λ),

∥v∥N,β,Λ = ∥IN,β,Λv∥N,β,Λ ≤ c

∥v∥Λ + N−

1
6 ∥∂xv∥Λ


. (2.9)

Lemma 2.2. If v ∈ Hr
A,β(Λ), integers r ≥ 1 and 0 ≤ k ≤ r, then

∥IN,β,Λv − v∥k,Λ ≤ c(βk
+ 1)(β2N)

1
3 +

k−r
2 ∥v∥Hr

A,β (Λ)
. (2.10)

Proof. Clearly, IN,β,ΛPN,β,Λv = PN,β,Λv. By using (2.8), (2.9) and Lemma 2.1 successively, we verify that

∥IN,β,Λv − PN,β,Λv∥k,Λ ≤ cβkN
k
2 ∥IN,β,Λ(PN,β,Λv − v)∥Λ

≤ cβkN
k
2


∥PN,β,Λv − v∥Λ + N−

1
6 ∥∂x(PN,β,Λv − v)∥Λ


≤ cβk(β2N)

1
3 +

k−r
2 ∥v∥Hr

A,β (Λ)
.
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Using Lemma 2.1 again yields

∥IN,β,Λv − v∥k,Λ ≤ ∥PN,β,Λv − v∥k,Λ + ∥IN,β,Λv − PN,β,Λv∥k,Λ

≤ c(βk
+ 1)(β2N)

1
3 +

k−r
2 ∥v∥Hr

A,β (Λ)
.

This ends the proof. �

Furthermore, thanks to (2.7), (2.6) and (2.10), we deduce that

|(v, φ)Λ − (v, φ)N,β,Λ| = |(v − IN,β,Λv, φ)Λ|

≤ c∥v − IN,β,Λv∥Λ∥φ∥Λ

≤ c(β2N)
1
3 −

r
2 ∥v∥Hr

A,β (Λ)
∥φ∥Λ. (2.11)

3. New generalized Hermite orthogonal approximation and Hermite–Gauss interpolation

In this section, we propose the new generalized Hermite approximation.

3.1. New generalized Hermite functions

For any real number γ , the new generalized Hermite functions are defined by

Ĥβ,γl (x) = (1 + x2)
γ
2 Hβl (x), β > 0, l ≥ 0.

Due to (2.1), Ĥβ,γl (x) is the l-th eigenfunction of the following Sturm–Liouville problem,

e
1
2 β

2x2∂x


e−β2x2∂x


(1 + x2)−

γ
2 e

1
2 β

2x2v(x)


+ λ
β

l (1 + x2)−
γ
2 v(x) = 0, l ≥ 0. (3.1)

Theweight functionωγ (x) = (1+x2)−γ . By virtue of (2.2), the set of all Ĥβ,γl (x) is a complete L2ωγ (Λ)-orthogonal system,
namely,

Λ

Ĥβ,γl (x)Ĥβ,γm (x)ωγ (x)dx =

√
π

β
δl,m. (3.2)

Thus, for any v ∈ L2ωγ (Λ), we have

v(x) =

∞
l=0

v̂
β,γ

l Ĥβ,γl (x), (3.3)

with

v̂
β,γ

l =
β

√
π


Λ

v(x)Ĥβ,γl (x)ωγ (x)dx. (3.4)

3.2. Generalized Hermite orthogonal approximation

Let N be any positive integer, and

Q̂
β,γ

N (Λ) = span{Ĥβ,γl (x), 0 ≤ l ≤ N}.

The L2ωγ (Λ)-orthogonal projection P̂N,β,γ ,Λ : L2ωγ (Λ) → Q̂
β,γ

N (Λ) is defined by

(P̂N,β,γ ,Λv − v, φ)ωγ ,Λ = 0, ∀φ ∈ Q̂
β,γ

N (Λ),

or equivalently,

P̂N,β,γ ,Λv(x) =

N
l=0

v̂
β,γ

l Ĥβ,γl (x). (3.5)

In order to estimate the approximation error, we introduce the following Sturm–Liouville operator,

Aβ,γ v(x) = −(1 + x2)
γ
2 e

1
2 β

2x2∂x


e−β2x2∂x


(1 + x2)−

γ
2 e

1
2 β

2x2v(x)

.
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According to (3.1), we have

Aβ,γ Ĥ
β,γ

l (x) = λ
β

l Ĥ
β,γ

l (x), l ≥ 0. (3.6)

Using integration by parts, we obtain

(v, Ĥβ,γl )ωγ ,Λ = (λ
β

l )
−1(v,Aβ,γ Ĥ

β,γ

l )ωγ ,Λ

= (λ
β

l )
−1(Aβ,γ v, Ĥ

β,γ

l )ωγ ,Λ. (3.7)

Therefore, if u, v are in the domain of the operator Aβ,γ , then

(Aβ,γ u, v)ωγ ,Λ = (u,Aβ,γ v)ωγ ,Λ.

Hence, Aβ,γ is a positive definite and self-conjugate operator. Thus, we could define the following spaces with any integer
r ≥ 0,

D(Ar
β,γ ) = {v | Ak

β,γ v ∈ L2ωγ (Λ), 0 ≤ k ≤ r},

equipped with the following semi-norm and norm,

|v|D(Ar
β,γ )

= ∥Ar
β,γ v∥ωγ ,Λ, ∥v∥D(Ar

β,γ )
=


r

k=0

|v|2
D(Ak

β,γ )

 1
2

.

Theorem 3.1. If v ∈ D(Ar
β,γ ) and integers 0 ≤ k ≤ r, then

|P̂N,β,γ ,Λv − v|D(Ak
β,γ )

≤ c(β2N)k−r
|v|D(Ar

β,γ )
. (3.8)

Proof. We use (3.3), (3.5), (3.6), (3.2) and (3.4) successively, to deduce that

|P̂N,β,γ ,Λv − v|2
D(Ak

β,γ )
=

 ∞
l=N+1

v̂
β,γ

l Ak
β,γ Ĥ

β,γ

l


2

ωγ ,Λ

=

√
π

β

∞
l=N+1

(λ
β

l )
2k(v̂

β,γ

l )2

=
β

√
π

∞
l=N+1

(λ
β

l )
2k(v, Ĥβ,γl )2ωγ ,Λ.

Furthermore, we use (3.7) repeatedly to obtain

(v, Ĥβ,γl )ωγ ,Λ = (λ
β

l )
−r(Ar

β,γ v, Ĥ
β,γ

l )ωγ ,Λ.

The above two equalities lead to that

|P̂N,β,γ ,Λv − v|2
D(Akβ,γ )

=
β

√
π

∞
l=N+1

(λ
β

l )
2k−2r(Ar

β,γ v, Ĥ
β,γ

l )2ωγ ,Λ

≤ c
β

√
π
(λ
β

N+1)
2k−2r

∞
l=N+1

(Ar
β,γ v, Ĥ

β,γ

l )2ωγ ,Λ

≤ c
β

√
π
(β2N)2k−2r

∞
l=0

(Ar
β,γ v, Ĥ

β,γ

l )2ωγ ,Λ.

On the other hand, thanks to (3.2)–(3.4), we have

∥Ar
β,γ v∥

2
ωγ ,Λ

=
β

√
π

∞
l=0

(Ar
β,γ v, Ĥ

β,γ

l )2ωγ ,Λ.

Consequently,

|P̂N,β,γ ,Λv − v|D(Ak
β,γ )

≤ c(β2N)k−r
∥Ar

β,γ v∥ωγ ,Λ = c(β2N)k−r
|v|D(Ar

β,γ )
.

The proof is completed. �
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We next derive another error estimate of the orthogonal approximation P̂N,β,γ ,Λv.

Theorem 3.2. If v ∈ Hr
ωγ
(Λ) and integers 0 ≤ k ≤ r, then

∥P̂N,β,γ ,Λv − v∥k,ωγ ,Λ ≤ c(β2N)
k−r
2

(1 + x2)−
γ
2 v


Hr
A,β (Λ)

. (3.9)

Proof. Since v ∈ Hr
ωγ
(Λ) ⊂ L2ωγ (Λ), we have

P̂N,β,γ ,Λv(x) =

N
l=0

v̂
β,γ

l Ĥβ,γl (x) = (1 + x2)
γ
2

N
l=0

v̂
β,γ

l Hβ,γl (x).

Let PN,β,Λv be the same as in (2.4). With the aid of (3.4), it is easy to show that all coefficients v̂β,γl are exactly the same as
the coefficients of expansion (2.3) for the function (1 + x2)−

γ
2 v(x). In other words,

P̂N,β,γ ,Λv(x) = (1 + x2)
γ
2 PN,β,Λ


(1 + x2)−

γ
2 v(x)


.

Therefore, we use (2.5) to derive that

∥∂kx (P̂N,β,γ ,Λv − v)∥ωγ ,Λ =

∂kx (1 + x2)
γ
2


PN,β,Λ


(1 + x2)−

γ
2 v


− (1 + x2)−
γ
2 v


ωγ ,Λ

=

 k
j=0

C j
k∂

k−j
x


(1 + x2)

γ
2


∂ jx


PN,β,Λ


(1 + x2)−

γ
2 v


− (1 + x2)−
γ
2 v


ωγ ,Λ

≤ c
k

j=0

C j
k

∂ jx PN,β,Λ (1 + x2)−
γ
2 v


− (1 + x2)−
γ
2 v


Λ

≤ c(β2N)
k−r
2

(1 + x2)−
γ
2 v


Hr
A,β (Λ)

. (3.10)

This ends the proof. �

In numerical analysis of the related spectral methods, we need the orthogonal approximation in the space H1
ωγ
(Λ). The

projection P̂1
N,β,γ ,Λ : H1

ωγ
(Λ) → Q̂

β,γ

N (Λ) is defined by

(∂x(v − P̂1
N,β,γ ,Λv), ∂xϕ)ωγ ,Λ + (v − P̂1

N,β,γ ,Λv, ϕ)ωγ ,Λ = 0, ∀ϕ ∈ Q̂
β,γ

N (Λ). (3.11)

Theorem 3.3. If v ∈ Hr
ωγ
(Λ) and integer r ≥ 1, then

∥v − P̂1
N,β,γ ,Λv∥1,ωγ ,Λ ≤ c(β2N)

1−r
2

(1 + x2)−
γ
2 v


Hr
A,β (Λ)

. (3.12)

Proof. By the projection theorem, we have

∥v − P̂1
N,β,γ ,Λv∥1,ωγ ,Λ ≤ ∥v − ϕ∥1,ωγ ,Λ, ∀ϕ ∈ Q̂

β,γ

N (Λ). (3.13)

Let w(x) = (1 + x2)−
γ
2 v(x). If v ∈ Hr

ωγ
(Λ), then w ∈ Hr(Λ). By taking ϕ = (1 + x2)

γ
2 PN,β,Λw ∈ Q̂

β,γ

N (Λ) in (3.13), we
use (2.5) with k = 0 to derive that

∥v − ϕ∥ωγ ,Λ =

(1 + x2)
γ
2 w − (1 + x2)

γ
2 PN,β,Λw


ωγ ,Λ

= ∥w − PN,β,Λw∥Λ ≤ c(β2N)−
r
2 ∥w∥Hr

A,β (Λ)

= c(β2N)−
r
2

(1 + x2)−
γ
2 v


Hr
A,β (Λ)

. (3.14)
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Furthermore, we use (2.5) with k = 0, 1 to verify that

∥∂x(v − ϕ)∥ωγ ,Λ =

∂x (1 + x2)
γ
2 w − (1 + x2)

γ
2 PN,β,Λw


ωγ ,Λ

≤

(1 + x2)
γ
2 ∂x(w − PN,β,Λw)


ωγ ,Λ

+ |γ |

x(1 + x2)
γ
2 −1(w − PN,β,Λw)


ωγ ,Λ

≤ ∥∂x(w − PN,β,Λw)∥Λ + c∥w − PN,β,Λw∥Λ

≤ c(β2N)
1−r
2

(1 + x2)−
γ
2 v


Hr
A,β (Λ)

. (3.15)

Finally, a combination of (3.13)–(3.15) leads to the desired result (3.12). �

3.3. Generalized Hermite–Gauss interpolation

We now turn to the new generalized Hermite–Gauss interpolation. Let σ βN,j and ω
β

N,j be the same as in Section 2. We set

σ̂
β

N,j = σ
β

N,j, ω̂
β,γ

N,j = (1 + (σ̂
β

N,j)
2)−γω

β

N,j, 0 ≤ j ≤ N. (3.16)

The corresponding discrete inner product and norm are as follows,

(u, v)N,β,γ ,Λ =

N
j=0

u(σ̂ βN,j)v(σ̂
β

N,j)ω̂
β,γ

N,j , ∥v∥N,β,γ ,Λ = (v, v)
1
2
N,β,γ ,Λ.

For any φ ∈ Q̂
β,γ
m (Λ) and ψ ∈ Q̂

β,γ

2N+1−m(Λ), there exist qφ ∈ Q
β
m(Λ) and qψ ∈ Q

β

2N+1−m(Λ), such that φ(x) = (1 + x2)
γ
2

qφ(x) and ψ(x) = (1 + x2)
γ
2 qψ (x), respectively. Thereby, we use (2.6) to deduce that for any φ ∈ Q̂

β,γ
m (Λ) and

ψ ∈ Q̂
β,γ

2N+1−m(Λ),

(φ, ψ)ωγ ,Λ = (qφ, qψ )Λ

=

N
j=0

qφ(σ
β

N,j)qψ (σ
β

N,j)ω
β

N,j

=

N
j=0

φ(σ̂
β

N,j)ψ(σ̂
β

N,j)ω̂
β,γ

N,j = (φ, ψ)N,β,γ ,Λ. (3.17)

In particular,

∥φ∥ωγ ,Λ = ∥φ∥N,β,γ ,Λ, ∀ φ ∈ Q̂
β,γ

N (Λ). (3.18)

For any v ∈ C(Λ), the new generalized Hermite–Gauss interpolation ÎN,β,γ ,Λv ∈ Q̂
β,γ

N (Λ) is determined uniquely by

ÎN,β,γ ,Λv(σ̂
β

N,j) = v(σ̂
β

N,j), 0 ≤ j ≤ N. (3.19)

Theorem 3.4. If v ∈ Hr
ωγ
(Λ), (1 + x2)−

γ
2 v ∈ Hr

A,β(Λ), integers r ≥ 1 and 0 ≤ k ≤ r, then

∥ÎN,β,γ ,Λv − v∥k,ωγ ,Λ ≤ c(βk
+ 1)(β2N)

1
3 +

k−r
2

(1 + x2)−
γ
2 v


Hr
A,β (Λ)

. (3.20)

Proof. We have from (2.7) and (3.19) that

(1 + (σ̂
β

N,j)
2)−

γ
2 ÎN,β,γ ,Λv(σ̂

β

N,j) = IN,β,Λ

(1 + x2)−

γ
2 v(x)


x=σ̂βN,j

, 0 ≤ j ≤ N.

Moreover, both of (1+ x2)−
γ
2 ÎN,β,γ ,Λv(x) and IN,β,Λ((1+ x2)−

γ
2 v(x)) belong to the same finite-dimensional set Q

β

N(Λ). The
above facts imply

ÎN,β,γ ,Λv(x) = (1 + x2)
γ
2 IN,β,Λ


(1 + x2)−

γ
2 v(x)


.
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Table 1
The global weighted errors with β = 1, γ = α +

7
12 .

α = −3 α = −1 α = 0 α = 1 α = 3

k = 1 2.63E−15 4.47E−15 7.74E−15 1.57E−14 8.35E−14
k = 2 3.21E−15 5.48E−15 9.78E−15 1.97E−14 9.89E−14
k = 3 4.12E−15 6.21E−15 9.57E−15 1.76E−14 7.85E−14

Table 2
The point-wise errors with β = 1, γ = α +

7
12 .

α = −3 α = −1 α = 0 α = 1 α = 3

k = 1 1.33E−15 3.39E−15 9.54E−15 5.50E−14 2.05E−12
k = 2 2.88E−15 4.44E−15 1.29E−14 8.08E−14 2.96E−12
k = 3 3.77E−15 4.27E−15 1.15E−14 6.22E−14 2.19E−12

Consequently, we use (2.10) to verify that

∥∂kx (ÎN,β,γ ,Λv − v)∥ωγ ,Λ =

∂kx (1 + x2)
γ
2


IN,β,Λ


(1 + x2)−

γ
2 v


− (1 + x2)−
γ
2 v


ωγ ,Λ

=

 k
j=0

C j
k∂

k−j
x


(1 + x2)

γ
2


∂ jx


IN,β,Λ


(1 + x2)−

γ
2 v


− (1 + x2)−
γ
2 v


ωγ ,Λ

≤ c
k

j=0

C j
k

∂ jx IN,β,Λ (1 + x2)−
γ
2 v


− (1 + x2)−
γ
2 v


Λ

≤ c(βk
+ 1)(β2N)

1
3 +

k−r
2

(1 + x2)−
γ
2 v


Hr
A,β (Λ)

.

This completes the proof. �

Finally, by using (3.19), (3.17) and (3.20) successively, we derive that

|(v, φ)ωγ ,Λ − (v, φ)N,β,γ ,Λ| = |(v − ÎN,β,γ ,Λv, φ)ωγ ,Λ|

≤ c∥v − ÎN,β,γ ,Λv∥ωγ ,Λ∥φ∥ωγ ,Λ

≤ c(β2N)
1
3 −

r
2

(1 + x2)−
γ
2 v


Hr
A,β (Λ)

∥φ∥ωγ ,Λ, ∀φ ∈ Q̂
β,γ

N (Λ). (3.21)

3.4. Numerical test

We now check the efficiency of the new approximation given by (3.5). We consider the test function

v(x) = (x2 + x + 1)
α
2 sin kx, (3.22)

which oscillates as |x| increases. Moreover, its amplitude decays to zero for α < 0, and grows to the infinity for α > 0, as
|x| increases. This test function belongs to the weighted space L2

|x|µ(Λ) as long as µ < −2α − 1. Since the new generalized

Hermite functions Hβ,γl (x) are mutually orthogonal with the weight function ωγ (x) = (1 + x2)−γ , the above test function
could be approximated by the generalized Hermite orthogonal approximation defined by (3.5), with γ ≥ −

1
2µ > α +

1
2 .

In Table 1, we show the global ωγ (x)-weighted errors ∥v − P̂N,β,γ ,Λv∥ωγ ,Λ with β = 1, γ = α +
7
12 and the mode

N = 20. We find that the new approximation with moderate mode N fits the approximated function well. In Table 2, we
list the point-wise errors max0≤j≤N |v(σ̂

β

N,j) − P̂N,β,γ ,Λv(σ̂
β

N,j)|. Clearly, the new generalized Hermite approximation also
possesses small point-wise numerical errors.

In Tables 3 and 4, we list the global weighted errors and the point-wise errors with β = 1, 1.5, respectively. We see from
Tables 1–4 that the suitable choice of parameter β leads to better numerical results sometimes.

Remark 3.1. If we use the standard Hermite orthogonal approximation for the test function (3.22), then there exists the
weight function e−x2 , which is much stronger than the weight functionωγ (x) = (1+ x2)−γ used in our new approximation.
Therefore, although its global weighted errors are smaller than those of the approximation (3.5), its point-wise errors might
be bigger than those of the approximation (3.5). In Tables 5 and 6, we list the global e−x2-weighted errors and the point-wise
errors of the standard Hermite orthogonal approximation with the mode N = 20, respectively. We find from Tables 1, 2, 5
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Table 3
The global weighted errors with γ = α +

7
12 .

α = 1 α = 3
k = 1 k = 2 k = 3 k = 1 k = 2 k = 3

β = 1 1.57E−14 1.97E−14 1.76E−14 8.35E−14 9.89E−14 7.85E−14
β = 1.5 9.66E−15 1.16E−14 1.05E−14 1.19E−14 1.36E−14 1.15E−14

Table 4
The point-wise errors with γ = α +

7
12 .

α = 1 α = 3
k = 1 k = 2 k = 3 k = 1 k = 2 k = 3

β = 1 5.50E−14 8.08E−14 6.22E−14 2.05E−12 2.96E−12 2.19E−12
β = 1.5 3.73E−14 6.04E−14 5.77E−14 6.96E−13 1.09E−12 1.09E−12

Table 5
The global e−x2 -weighted errors of standard Hermite approximation.

α = −3 α = −1 α = 0 α = 1 α = 3

k = 1 8.70E−16 1.23E−15 1.61E−15 2.54E−15 1.11E−14
k = 2 1.39E−15 2.02E−15 2.57E−15 2.98E−15 9.40E−15
k = 3 1.91E−15 2.09E−15 2.64E−15 3.77E−15 1.06E−14

Table 6
The point-wise errors of standard Hermite approximation.

α = −3 α = −1 α = 0 α = 1 α = 3

k = 1 9.41E−11 2.43E−10 1.70E−10 2.54E−10 3.76E−10
k = 2 2.54E−10 2.11E−10 2.20E−10 3.00E−10 1.83E−9
k = 3 4.63E−10 1.43E−10 2.04E−10 3.86E−10 2.15E−9

and 6 that the standard Hermite orthogonal approximation has smaller global weighted errors, but larger point-wise errors,
than the new approximation (3.5).

Remark 3.2. As pointed out by the referee of this paper, for the test function v(x) given by (3.22), wemay follow the idea of
London to approximate the auxiliary function v∗(x) = v(x) sech x by using the Hermite functions. Let v̂∗

l be the coefficients
of the expansion of v∗(x) in terms of e−

1
2 x

2
Hl(x). Then we obtain the following approximation to the original function,

P∗

Nv(x) =
1

sech x


N
l=0

v̂∗

l e
−

1
2 x

2
Hl(x)


. (3.23)

We could use (2.5) with k = 0 and β = 1 to verify that

∥P∗

Nv − v∥sech2 x,Λ = ∥PN,1,Λv∗
− v∗

∥Λ ≤ cN−
r
2 ∥v sech x∥Hr

A,1(Λ)
.

Thus, the global errors with the weight function sech2 x are small usually. But the corresponding global errors with the
weight functionωγ (x) are bigger than those of the approximation (3.5). In Tables 7 and 8, we list the globalωγ (x)-weighted
errors and the point-wise errors of the approximation (3.23) with themodeN = 20, respectively. They confirm the analysis.
We also find that the point-wise errors of the approximations (2.3) and (3.23) are nearly the same for the test function (3.22)
with α > 0, while the point-wise errors of the approximation (3.5) are smaller for the test function (3.22) with α < 0. By the
way, in applications of the above two approximations to numerical solutions of differential equations defined on the whole
line, we have tomultiply the underlying differential equations by theweight functions and integrate the resulting equalities
by parts, and then derive their weak formulations. Moreover, in the numerical analysis of the corresponding spectral
methods, we need some results on the H1

sech2 x
(Λ)-orthogonal approximation and the H1

ωγ
(Λ)-orthogonal approximation,

respectively. For this purpose, it seems simpler to use the approximation with the weight function ωγ (x) usually.

Remark 3.3. Wemay also use the generalized Jacobi rational approximation proposed in [12]. For a, b > −1, J (a,b)l (x) stands
for the Jacobi polynomial of degree l. For any real numbers a and b,

â :=


−a, a ≤ −1,
0, a > −1, ā :=


−a, a ≤ −1,
a, a > −1,
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Table 7
The global ωγ (x)-weighted errors of approximation (3.23).

α = −3 α = −1 α = 0 α = 1 α = 3

k = 1 3.91E−15 5.64E−15 1.51E−14 7.93E−14 2.49E−12
k = 2 6.95E−15 9.10E−15 3.06E−14 1.15E−13 3.21E−12
k = 3 1.91E−14 1.47E−14 3.23E−14 1.09E−13 2.51E−12

Table 8
The point-wise errors of approximation (3.23).

α = −3 α = −1 α = 0 α = 1 α = 3

k = 1 2.43E−15 3.86E−15 9.65E−15 5.53E−14 3.11E−12
k = 2 3.70E−15 5.66E−15 2.38E−14 7.23E−14 2.99E−12
k = 3 1.09E−14 1.11E−14 1.76E−14 7.94E−14 2.31E−12

Table 9

The global ω
(α−

11
12 ,α−

11
12 )

R (x)-weighted errors of approximation (3.24).

α = −3 α = −1 α = 0 α = 1 α = 3

k = 1 7.01E−15 4.36E−15 7.68E−15 1.56E−14 7.15E−14
k = 2 5.01E−15 5.41E−15 9.36E−15 2.01E−14 9.81E−14
k = 3 3.08E−15 6.17E−15 8.16E−15 1.68E−14 7.76E−14

Table 10
The point-wise errors of approximation (3.24).

α = −3 α = −1 α = 0 α = 1 α = 3

k = 1 1.34E−15 3.56E−15 9.16E−15 5.51E−14 2.01E−12
k = 2 2.16E−15 4.40E−15 1.36E−14 8.70E−14 2.38E−12
k = 3 3.71E−15 4.26E−15 1.18E−14 6.11E−14 2.25E−12

(likewise for b̂ and b̄). The symbol [a] represents the largest integer ≤ a. The generalized Jacobi functions are given by

J̃ (a,b)l (x) :=


J (a,b)l (x), a, b > −1,

(1 + x)−bJ (a,−b)
l−[−b](x), a > −1, b ≤ −1,

(1 − x)−aJ (−a,b)
l−[−a](x), a ≤ −1, b > −1,

(1 − x)−a(1 + x)−bJ (−a,−b)
l−[−a]−[−b](x), a, b ≤ −1.

The generalized Jacobi rational functions are defined by

R(a,b)l (x) = J̃ (a,b)l


x

√
x2 + 1


, l ≥ [â] + [b̂].

The weight function is

ω
(a,b)
R (x) = (


x2 + 1 + x)b−a(x2 + 1)−

a+b+3
2 .

The generalized Jacobi rational functions form a complete L2
ω
(a,b)
R
(Λ)-orthogonal system.

We now approximate the test function (3.22) in a specific way, namely,

P∗∗

N v(x) =

N
l=0

v̂∗∗

l R


α−

11
12 ,α−

11
12


l (x), (3.24)

v∗∗

l being the coefficients of the expansion of v(x) in terms of R
(α−

11
12 ,α−

11
12 )

l (x). In Tables 9 and 10, we list the global

ω
(α−

11
12 ,α−

11
12 )

R (x)-weight errors and the point-wise errors of the approximation (3.24) with the mode N = 20, respectively.

Clearly, the weight function ω
(α−

11
12 ,α−

11
12 )

R (x) is exactly the same as the weight function ωγ (x), γ = α +
7
12 . By

comparing Tables 1, 2, 9 and 10, we find that the approximations (3.5) and (3.24) have nearly the same accuracy.
However, in their applications to numerical solutions of differential equations, we have to derive the weak formulations of
underlying problems, andneed some results on theH1

ω
(α−

11
12 ,α−

11
12 )

R

(Λ)-orthogonal approximation and theH1
ωγ
(Λ)-orthogonal
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approximation, respectively. It seems simpler to use the approximation (3.5) than the approximation (3.24). Besides,
in actual computation, it is easier to perform the generalized Hermite orthogonal approximation than the generalized
Jacobi rational orthogonal approximation, except the standard Chebyshev rational orthogonal approximation which is only
available for the functions behaving like |x|α, α < 0, for large |x|.

4. Generalized Hermite spectral method

In this section, we propose the generalized Hermite spectral method.

4.1. A linear problem on the whole line

Let λ be a positive constant, and f ∈ L2ωγ (Λ), γ > α +
1
2 . We consider the following model problem,

−∂2x U(x)+ λU(x) = f (x), x ∈ Λ,

U(x)|x|−α → 0, as |x| → ∞.
(4.1)

Let V (Λ) = H1
ωγ
(Λ). We introduce the bilinear form

Aλ,γ ,Λ(u, v) =


Λ

∂xu(x)∂xv(x)(1 + x2)−γ dx − 2γ

Λ

∂xu(x)v(x)x(1 + x2)−γ−1dx

+ λ


Λ

u(x)v(x)(1 + x2)−γ dx, ∀u, v ∈ V (Λ). (4.2)

With the aid of the Cauchy inequality, a direct calculation shows that

|Aλ,γ ,Λ(u, v)| ≤


1
2

+ |γ |


∥∂xu∥2

ωγ ,Λ
+
λ

2
∥u∥2

ωγ ,Λ
+

1
2
∥∂xv∥

2
ωγ ,Λ

+


λ

2
+ |γ |


∥v∥2

ωγ ,Λ
, ∀u, v ∈ V (Λ). (4.3)

For simplicity of statements, we set

cγ =


−γ , for − 1 ≤ γ ≤ 0,
γ (2γ + 1), otherwise.

Then, for any v ∈ H2
ωγ
(Λ),

− 2γ

Λ

∂xv(x)v(x)x(1 + x2)−γ−1dx = γ


Λ

v2(x)(1 + x2)−γ−1dx − 2γ (γ + 1)

Λ

v2(x)x2(1 + x2)−γ−2dx

≥ −cγ ∥v∥2
ωγ ,Λ

. (4.4)

Inserting (4.4) into (4.2) with u = v, we obtain

Aλ,γ ,Λ(v, v) ≥ ∥∂xv∥
2
ωγ ,Λ

+ (λ− cγ )∥v∥2
ωγ ,Λ

. (4.5)

Wenowderive another property of the bilinear formAλ,γ ,λ(u, v), which plays an important role in the numerical analysis
of the spectral method for the whole line. Let W (Λ) j V (Λ), and Q∗

N(Λ) ⊂ V (Λ) be a finite-dimensional subspace.
Furthermore,WN(Λ) = W (Λ) ∩ Q∗

N(Λ). We define the operator ∗P1
N,λ,β,γ ,Λ : W (Λ) → WN(Λ), by

Aλ,γ ,Λ(∗P1
N,λ,β,γ ,Λv − v, φ) = 0, ∀ φ ∈ WN(Λ). (4.6)

Proposition 4.1. If v ∈ W (Λ), w ∈ WN(Λ) and λ > cγ , then

Aλ,γ ,Λ(v − ∗P1
N,λ,β,γ ,Λv, v − ∗P1

N,λ,β,γ ,Λv) ≤ Aλ,γ ,Λ(v − w, v − w). (4.7)

Proof. A direct calculation shows

Aλ,γ ,Λ(v − w, v − w) = Aλ,γ ,Λ(v − ∗P1
N,λ,β,γ ,Λv, v − ∗P1

N,λ,β,γ ,Λv)

+ Aλ,γ ,Λ(∗P1
N,λ,β,γ ,Λv − w, ∗P1

N,λ,β,γ ,Λv − w)

+ 2Aλ,γ ,Λ(v − ∗P1
N,λ,β,γ ,Λv, ∗P1

N,λ,β,γ ,Λv − w).

Thanks to (4.6), we have

Aλ,γ ,Λ(v − ∗P1
N,λ,β,γ ,Λv, ∗P1

N,λ,β,γ ,Λv − w) = 0.

Due to λ > cγ , we use (4.5) to assert that

Aλ,γ ,Λ(∗P1
N,λ,β,γ ,Λv − w, ∗P1

N,λ,β,γ ,Λv − w) ≥ 0.

Finally, the desired inequality (4.7) follows from the previous statements immediately. �
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Now, let v ∈ V (Λ). By multiplying (4.1) by v(x)ωγ (x) and integrating the resulting equation by parts, we derive a weak
formulation of (4.1). It is to look for the solution U ∈ V (Λ) such that

Aλ,γ ,Λ(U, v) = (f , v)ωγ ,Λ, ∀v ∈ V (Λ). (4.8)

If λ > cγ , then we use (4.3), (4.5) and the Lax–Milgram lemma to verify that problem (4.8) admits a unique solution.
For solving the above problem numerically, we introduce the finite-dimensional space

VN(Λ) = V (Λ) ∩ Q̂
β,γ

N (Λ).

The spectral method for solving problem (4.8) is to seek the solution uN ∈ VN(Λ) such that

Aλ,γ ,Λ(uN , φ) = (f , φ)ωγ ,Λ, ∀φ ∈ VN(Λ). (4.9)

For checking the existence of solutions of (4.9), it suffices to prove the uniqueness of its solutions. Assume that u(1)N (x)
and u(2)N (x) are solutions of (4.9), and ũN(x) = u(1)N (x)− u(2)N (x) ∈ VN(Λ). Then

Aλ,γ ,Λ(ũN , φ) = 0, ∀ φ ∈ VN(Λ).

Putting φ = ũN ∈ VN(Λ) in the above equation, we use (4.5) to obtain

∥∂xũN∥
2
ωγ ,Λ

+ (λ− cγ )∥ũN∥
2
ωγ ,Λ

≤ Aλ,γ ,Λ(ũN , ũN) = 0.

If λ > cγ , then ũN(x) ≡ 0. This means the uniqueness of the solution of (4.9).
We now estimate the error of the numerical solution uN(x). To do this, we introduce the auxiliary operator P

1
N,β,γ ,Λ :

V (Λ) → VN(Λ), defined by

Aλ,γ ,Λ(P
1
N,β,γ ,Λv − v, φ) = 0, ∀ φ ∈ VN(Λ). (4.10)

We have from (4.8) and (4.10) that

Aλ,γ ,Λ(P
1
N,β,γ ,ΛU, φ) = (f , φ)ωγ ,Λ, ∀φ ∈ VN(Λ). (4.11)

Subtracting (4.11) from (4.9), yields

Aλ,γ ,Λ(uN − P
1
N,β,γ ,ΛU, φ) = 0, ∀φ ∈ VN(Λ).

Taking φ = uN − P
1
N,β,γ ,ΛU in the above equation, we obtain

Aλ,γ ,Λ(uN − P
1
N,β,γ ,ΛU, uN − P

1
N,β,γ ,ΛU) = 0.

This fact, together with (4.5), implies uN = P
1
N,β,γ ,ΛU .

So far, it remains to estimate the approximation error of the auxiliary operator P
1
N,β,γ ,ΛU . For this purpose, we use

Proposition 4.1 with

W (Λ) = V (Λ), WN(Λ) = VN(Λ), v = U,

w = P̂1
N,β,γ ,ΛU, ∗P1

N,β,γ ,ΛU = P
1
N,β,γ ,ΛU .

Then, by virtue of (4.5), (4.7) and (4.3), we verify that

∥∂x(U − P
1
N,β,γ ,ΛU)∥

2
ωγ ,Λ

+ (λ− cγ )∥U − P
1
N,β,γ ,ΛU∥

2
ωγ ,Λ

≤ Aλ,γ ,Λ(U − P
1
N,β,γ ,ΛU,U − P

1
N,β,γ ,ΛU)

≤ Aλ,γ ,Λ(U − P̂1
N,β,γ ,ΛU,U − P̂1

N,β,γ ,ΛU)

≤ (1 + |γ |)∥∂x(U − P̂1
N,β,γ ,ΛU)∥

2
ωγ ,Λ

+ (λ+ |γ |)∥U − P̂1
N,β,γ ,ΛU∥

2
ωγ ,Λ

. (4.12)

Finally, by using (4.12) and (3.12) successively, we deduce that if λ > cγ and integer r ≥ 2, then

∥U − uN∥
2
H1
ωγ (Λ)

= ∥∂x(U − P
1
N,β,γ ,ΛU)∥

2
ωγ ,Λ

+ ∥U − P
1
N,β,γ ,ΛU∥

2
ωγ ,Λ

≤


1 +

1
λ− cγ


((1 + |γ |)∥∂x(U − P̂1

N,β,γ ,ΛU)∥
2
ωγ ,Λ

+ (λ+ |γ |)∥U − P̂1
N,β,γ ,ΛU∥

2
ωγ ,Λ

)

≤ c(β2N)
1−r
2

(1 + x2)−
γ
2 U

Hr
A,β (Λ)

. (4.13)
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Table 11
The point-wise error of algorithm (4.14) with β = 1.

N = 20 N = 40 N = 60 N = 80 N = 100 N = 120 N = 140

γ = 0 6.05E−2 4.15E−3 4.82E−4 7.90E−5 1.93E−5 5.25E−6 1.56E−6
γ = −2 5.46E−2 3.51E−3 3.90E−4 6.16E−5 1.39E−5 3.74E−6 1.10E−6
γ = −3 4.69E−2 2.81E−3 2.97E−4 4.39E−5 9.44E−6 2.19E−6 7.62E−7

Table 12
The point-wise error of algorithm (4.14) with γ = −3.

N = 20 N = 40 N = 60 N = 80 N = 100 N = 120 N = 140

β = 1 4.69E−2 2.81E−3 2.97E−4 4.39E−5 9.44E−6 2.19E−6 7.62E−7
β = 1.5 1.56E−3 3.29E−5 4.86E−6 1.76E−6 1.30E−6 5.40E−7 4.13E−7

We next describe the implementation for the spectral scheme (4.9). Let

φl(x) = π−
1
4 Ĥβ,γl (x), 0 ≤ l ≤ N.

We expand the numerical solution as

uN(x) =

N
l=0

ûlφl(x).

Inserting the above expression into (4.9) with φ = φk(x), we obtain

N
l=0


(∂xφl, ∂xφk)ωγ ,Λ − 2γ (∂xφl, x(1 + x2)−1φk)ωγ ,Λ + λ(φl, φk)ωγ ,Λ


ûl = (f , φk)ωγ ,Λ, 0 ≤ k ≤ N. (4.14)

We can rewrite system (4.14) as a compact matrix form. To do this, we introduce the matrices A = (ak,l)0≤k,l≤N , B =

(bk,l)0≤k,l≤N and C = (ck,l)0≤k,l≤N , with the following entries:

ak,l = (∂xφl, ∂xφk)ωγ ,Λ, bk,l = (∂xφl, x(1 + x2)−1φk)ωγ ,Λ, ck,l = (φl, φk)ωγ ,Λ.

Furthermore, let û = (û0, û1, . . . , ûN)
T and F = (F0, F1, . . . , FN)T with Fk = (f , φk)ωγ ,Λ. Then, system (4.14) becomes

(A − 2γ B + C)û = F. (4.15)

We now use the algorithm (4.14) to solve problem (4.9) with the test function

U(x) = (x2 + 1)
α
2 sin kx.

Clearly, U ∈ L2ωγ (Λ) as long as γ > α +
1
2 .

In actual computation, we take λ = 1. We measure the numerical accuracy by the point-wise error EN,pw = max0≤j≤N

|U(σ̂ βN,j)− uN(σ̂
β

N,j)|.
In Table 11, we list the values of EN,pw , with k = 2, α = −6, β = 1 and γ = 0,−2,−3, vs. the mode N . The numerical

results demonstrate the convergence of algorithm (4.14), as predicted by (4.13). They also show that the numerical results
with γ = −3 are better than the results with γ = 0. In fact, the case with γ = 0 corresponds to the spectral method using
the Hermite functions given in [6]. Because the base functions with γ = −3 simulate the asymptotic behavior of the test
function more reasonably than the base functions with γ = 0, so the numerical results with γ = −3 are better than those
with γ = 0. In Table 12, we list the corresponding values of EN,pw with β = 1, 1.5 and γ = −3. They indicate that a suitable
choice of parameter β provides better numerical results sometimes.

4.2. Sine–Gordon equation

As an example of nonlinear problems, we consider the following sine–Gordon equation,
∂2t U(x, t)− ∂2x U(x, t)+ sinU(x, t) = f (x, t), x ∈ Λ, 0 < t ≤ T ,
∂tU(x, 0) = U1(x), U(x, 0) = U0(x), x ∈ Λ.

(4.16)

In addition, U(x) satisfies certain boundary conditions at infinity.
We nowderive aweak formulation of (4.16), which depends on the asymptotic behavior ofU(x, t) at infinity.We suppose

that

U(x, t)∂xU(x, t)ωγ (x) → 0, as |x| → ∞, 0 ≤ t ≤ T , a.e. (4.17)
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Indeed, if U ∈ H1
ωγ
(Λ), 0 ≤ t ≤ T , a.e., then U(x, t)ω

1
2
γ (x) = o(x−

1
2 ) and ∂xU(x, t)ω

1
2
γ (x) = o(x−

1
2 ) as |x| → ∞, 0 ≤ t ≤

T , a.e. In this case, the boundary condition (4.17) is fulfilled.
Let V (Λ) = H1

ωγ
(Λ) as in the last subsection. We multiply the first equation of (4.16) by v(x)ωγ (x)v, v ∈ V (Λ), and

integrate the resulting equality by parts over the interval Λ. Then we obtain the weak formulation of problem (4.16) with
the boundary condition (4.17). It is to find the solution U ∈ W 1,∞(0, T ; L2ωγ (Λ)) ∩ L∞(0, T ; V (Λ)) such that

(∂2t U(t), v)ωγ ,Λ + (∂xU(t), ∂x(vωγ ))Λ + (sinU(t), v)ωγ ,Λ = (f (t), v)ωγ ,Λ, ∀v ∈ V (Λ), 0 < t ≤ T ,
∂tU(x, 0) = U1(x), U(x, 0) = U0(x), x ∈ Λ.

(4.18)

If U0 ∈ V (Λ),U1 ∈ L2ωγ (Λ) and f ∈ L2(0, T ; L2ωγ (Λ)), then problem (4.18) admits a unique solution.

Let VN(Λ) = V (Λ) ∩ Q̂
β,γ

N (Λ) as before. The spectral scheme for solving problem (4.18) is to seek uN(t) ∈ VN(Λ) for all
t ≥ 0, such that

(∂2t uN(t), φ)ωγ ,Λ + (∂xuN(t), ∂x(ωγφ))Λ + (sin uN(t), φ)ωγ ,Λ = (f (t), φ)ωγ ,Λ,
∀φ ∈ VN(Λ), 0 < t ≤ T ,

∂tuN(x, 0) = P̂N,β,γ ,ΛU1(x) or P̂1
N,β,γ ,ΛU1(x), uN(x, 0) = P̂1

N,β,γ ,ΛU0(x), x ∈ Λ.

(4.19)

We now deal with the convergence of the spectral scheme (4.19). Let UN = P̂1
N,β,γ ,ΛU . Thanks to (3.11), we obtain from

(4.18) that
(∂2t UN(t), φ)ωγ ,Λ + (∂xUN(t), ∂xφ)ωγ ,Λ − 2γ (∂xUN(t), x(1 + x2)−1φ)ωγ ,Λ

+ (sinUN(t), φ)ωγ ,Λ +

4
j=1

Gj(t, φ) = (f (t), φ)ωγ ,Λ, ∀φ ∈ VN(Λ), 0 < t ≤ T , (4.20)

where
G1(t, φ) = (∂2t U(t)− ∂2t UN(t), φ)ωγ ,Λ,
G2(t, φ) = (UN(t)− U(t), φ)ωγ ,Λ,

G3(t, φ) = −2γ (∂xU(t)− ∂xUN(t), x(1 + x2)−1φ)ωγ ,Λ,

G4(t, φ) = (sinU(t)− sinUN(t), φ)ωγ ,Λ.

Further, we set ŨN = uN − UN . Then, by subtracting (4.20) from (4.19), we obtain
(∂2t ŨN(t), φ)ωγ ,Λ + (∂xŨN(t), ∂xφ)ωγ ,Λ =

2
j=1

Fj(t, φ)+

4
j=1

Gj(t, φ),

∀φ ∈ VN(Λ), 0 < t ≤ T ,

∂t ŨN(x, 0) = P̂N,β,γ ,ΛU1(x)− P̂1
N,β,γ ,ΛU1(x) or 0, ŨN(x, 0) = 0, x ∈ Λ,

(4.21)

where

F1(t, φ) = −2

cos


uN(t)+

1
2
ŨN(t)


sin

1
2
ŨN(t)


, φ


ωγ ,Λ

,

F2(t, φ) = 2γ (x(1 + x2)−1∂xŨN(t), φ)ωγ ,Λ.

Taking φ = 2∂t ŨN(t) in (4.21), we deduce that

∂t(∥∂t ŨN(t)∥2
ωγ ,Λ

+ ∥∂xŨN(t)∥2
ωγ ,Λ

) = 2
2

j=1

Fj(t, ∂t ŨN(t))+ 2
4

j=1

Gj(t, ∂t ŨN(t)). (4.22)

We next estimate the right side of (4.22). Obviously,

|F1(t, ∂t ŨN(t))| ≤
1
2
(∥∂t ŨN(t)∥2

ωγ ,Λ
+ ∥ŨN(t)∥2

ωγ ,Λ
), (4.23)

|F2(t, ∂t ŨN(t))| ≤
1
2
|γ |(∥∂t ŨN(t)∥2

ωγ ,Λ
+ ∥∂xŨN(t)∥2

ωγ ,Λ
). (4.24)

By virtue of (3.12), we derive that

|G1(t, ∂t ŨN(t))| ≤
1
16

∥∂t ŨN(t)∥2
ωγ ,Λ

+ c(β2N)1−r
(1 + x2)−

γ
2 ∂2t U(t)

2
Hr
A,β (Λ)

, (4.25)

|Gj(t, ∂t ŨN(t))| ≤
1
16

∥∂t ŨN(t)∥2
ωγ ,Λ

+ c(β2N)1−r
(1 + x2)−

γ
2 U(t)

2
Hr
A,β (Λ)

, j = 2, 3, 4. (4.26)
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Moreover, since ŨN(x, 0) = 0, we use the Hölder inequality to obtain

∥ŨN(t)∥2
ωγ ,Λ

=


Λ

 t

0
∂sŨN(x, s)ds

2

ωγ (x)dx ≤ t
 t

0
∥∂sŨN(s)∥2

ωγ ,Λ
ds. (4.27)

On the other hand, if ∂tuN(x, 0) = P̂1
N,β,γ ,ΛU1(x), then ∂t ŨN(x, 0) = 0. If ∂tuN(x, 0) = P̂N,β,γ ,ΛU1(x), then (3.10) implies

∥∂t ŨN(0)∥2
ωγ ,Λ

≤ c(β2N)1−r
(1 + x2)−

γ
2 U1

2
Hr−1
A,β (Λ)

. (4.28)

For describing the error of the numerical solution, we set

E(ŨN , t) = ∥∂t ŨN(t)∥2
ωγ ,Λ

+ ∥∂xŨN(t)∥2
ωγ ,Λ

,

R(U, t) =

(1 + x2)−
γ
2 ∂2t U(t)

2
Hr
A,β (Λ)

+

(1 + x2)−
γ
2 U(t)

2
Hr
A,β (Λ)

.

Besides, if ∂tuN(x, 0) = P̂1
N,β,γ ,ΛU1(x), then we put ρ(U1) = 0. If ∂tuN(x, 0) = P̂N,β,γ ,ΛU1(x), then we put ρ(U1) =

∥(1 + x2)−
γ
2 U1∥

2
Hr−1
A,β (Λ)

.

By substituting (4.23)–(4.27) into (4.22), we obtain

∂tE(ŨN , t) ≤


|γ | +

3
2


E(ŨN , t)+ t

 t

0
E(ŨN , s)ds + c(β2N)1−rR(U, t).

Integrating the above inequality, we derive that at least, for all 0 ≤ t ≤ T ,

E(ŨN , t) ≤


1
2
t2 + |γ | +

3
2

 t

0
E(ŨN(t), s)ds + c(β2N)1−r

 t

0
R(U, s)ds + ρ(U1)


≤


1
2
T 2

+ |γ | +
3
2

 t

0
E(ŨN(t), s)ds + c(β2N)1−r

 t

0
R(U, s)ds + ρ(U1)


.

Furthermore, we consider the auxiliary function

W (t) =


1
2
T 2

+ |γ | +
3
2

 t

0
W (s)ds + c(β2N)1−r

 t

0
R(U, s)ds + ρ(U1)


. (4.29)

Obviously, E(ŨN , t) ≤ W (t). Moreover, (4.29) implies∂t

e−


1
2 T

2
+|γ |+

3
2


tW (t)


= c(β2N)1−re−


1
2 T

2
+|γ |+

3
2


tR(U, t), 0 < t ≤ T ,

W (0) = c(β2N)1−rρ(U1).

Therefore,

E(ŨN , t) ≤ W (t) ≤ c(β2N)1−re

1
2 T

2
+|γ |+

3
2


t
 t

0
R(U, s)e−


1
2 T

2
+|γ |+

3
2


sds + ρ(U1)


. (4.30)

This fact with (3.12) leads to

E(U − uN , t) ≤ c(β2N)1−r


e

1
2 T

2
+|γ |+

3
2


t
 t

0
R(U, s)e−


1
2 T

2
+|γ |+

3
2


sds + ρ(U1)



+

(1 + x2)−
γ
2 ∂tU(t)

2
Hr
A,β (Λ)

+

(1 + x2)−
γ
2 U(t)

2
Hr
A,β (Λ)


. (4.31)

We now describe the implementation for the spectral scheme (4.19). Let τ be the mesh size in time t . The fully discrete
scheme for solving (4.18) is as follows,

2(uN(t + τ), φ)ωγ ,Λ + τ 2(∂xuN(t + τ), ∂xφ)ωγ ,Λ − 2γ τ 2(∂xuN(t + τ), x(1 + x2)−1φ)ωγ ,Λ

= 4(uN(t), φ)ωγ ,Λ − 2(uN(t − τ), φ)ωγ ,Λ − τ 2(∂xuN(t − τ), ∂xφ)ωγ ,Λ

+ 2γ τ 2(∂xuN(t − τ), x(1 + x2)−1φ)ωγ ,Λ − 2τ 2(sin uN(t), φ)ωγ ,Λ + τ 2(f (t + τ)+ f (t − τ), φ)ωγ ,Λ. (4.32)
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Table 13
The global weighted numerical errors for solution (4.34).

N = 20 N = 40 N = 60 N = 80 N = 100 N = 120 N = 140 N = 160

τ = 10−1 7.84E−3 6.14E−3 6.14E−3 6.14E−3 6.14E−3 6.17E−3 6.17E−3 6.17E−3
τ = 10−2 3.18E−3 1.35E−4 5.50E−5 5.27E−5 5.26E−5 5.27E−5 5.26E−5 5.26E−5
τ = 10−3 2.47E−3 1.14E−4 1.42E−5 2.74E−6 7.79E−7 7.33E−7 7.23E−7 7.27E−7
τ = 10−4 6.73E−4 4.76E−5 5.50E−6 8.52E−7 1.66E−7 4.88E−8 1.20E−8 1.03E−8

Table 14
The point-wise numerical errors for solution (4.34).

N = 20 N = 40 N = 60 N = 80 N = 100 N = 120 N = 140 N = 160

τ = 10−1 3.95E−3 4.38E−3 4.33E−3 4.19E−3 4.32E−3 4.25E−3 4.25E−3 4.25E−3
τ = 10−2 1.37E−3 6.51E−5 4.37E−5 4.36E−5 4.57E−5 4.46E−5 4.45E−5 4.45E−5
τ = 10−3 1.34E−3 6.14E−5 6.38E−6 1.08E−6 6.08E−7 5.33E−7 5.13E−7 5.13E−7
τ = 10−4 2.99E−4 3.11E−5 4.00E−6 6.73E−6 1.35E−7 3.14E−8 8.06E−9 7.37E−9

Let φl(x) be the same as in the last subsection. We expand the numerical solution as

uN(t, x) =

N
l=0

ûl(t)φl(x).

Inserting the above expression into (4.32) with φ = φk(x), we obtain
N
l=0


2(φl, φk)ωγ ,Λ + τ 2(∂xφl, ∂xφk)ωγ ,Λ − 2γ τ 2(∂xφl, x(1 + x2)−1φk)ωγ ,Λ


ûl(t + τ)

=

N
l=0

4(φl, φk)ωγ ,Λûl(t)+

N
l=0


−2(φl, φk)ωγ ,Λ − τ 2(∂xφl, ∂xφk)ωγ ,Λ + 2γ τ 2(∂xφl, x(1 + x2)−1φk)ωγ ,Λ


× ûl(t − τ)− 2τ 2(sin uN(t), φk)ωγ ,Λ + τ 2(f (t + τ)+ f (t − τ), φk)ωγ ,Λ, 0 ≤ k ≤ N. (4.33)

We can rewrite the system (4.33) as a compact matrix form. To do this, we introduce the matrices A = (ak,l)0≤k,l≤N , B =

(bk,l)0≤k,l≤N and C = (ck,l)0≤k,l≤N , with the following entries:

ak,l = (φl, φk)ωγ ,Λ, bk,l = (∂xφl, ∂xφk)ωγ ,Λ, ck,l = (∂xφl, x(1 + x2)−1φk)ωγ ,Λ.

Also, let û(t) = (û0(t), û1(t), . . . , ûN(t))T and F = (F0, F1, . . . , FN)T ,with
Fk = (f (t + τ)+ f (t − τ), φk)ωγ ,Λ − 2(sin uN(t), φk)ωγ ,Λ.

Then, system (4.33) becomes
(2A + τ 2B − 2γ τ 2C)û(t + τ) = 4Aû(t)+ (−2A − τ 2B + 2γ τ 2C)û(t − τ)+ τ 2F.

We use the algorithm (4.33) to solve the sine–Gordon equation (4.16) with f (x, t) ≡ 0. We measure the numerical
accuracy by the global weighted error Eβ,γN (t) = ∥U(t) − uN(t)∥N,β,γ ,Λ and the point-wise error EN,pw(t) = max0≤j≤N

|U(σ̂ βN,j, t)− uN(σ̂
β

N,j, t)|, respectively.
The first test function describing the collisions of soliton–antisoliton, is given by

U(x, t) = 4 tan−1

 sinh


at√
1−a2


a cosh


x√
1−a2


 , |a| < 1, a ≠ 0. (4.34)

Since this test function decays to zero exponentially as |x| increases, we could use (4.33) with any γ . In actual computation,
we take a = 0.5, β = 1 and γ = 0.

In Table 13, we list the global weighted error E1,0
N (1) with various mode N and step size τ . They demonstrate that the

numerical errors decay as N increases and τ decreases. This confirms the theoretical analysis. In Table 14, we list the point-
wise errors EN,pw(1), which also indicate the convergence of algorithm (4.33).

The sine–Gordon equation (4.16) with f (x, t) ≡ 0 also possesses solutions describing the collisions of soliton–soliton,
namely,

U(x, t) = 4 tan−1

a sinh


x√
1−a2


cosh


at√
1−a2


 , |a| < 1, a ≠ 0. (4.35)
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Table 15
The global weighted numerical errors for solution (4.35).

N = 20 N = 40 N = 60 N = 80 N = 100 N = 120 N = 140 N = 160

τ = 10−1 2.93E−3 2.26E−3 2.24E−3 2.24E−3 2.24E−3 2.24E−3 2.24E−3 2.24E−3
τ = 10−2 1.97E−3 3.16E−4 6.25E−5 2.77E−5 2.48E−5 2.47E−5 2.47E−5 2.47E−5
τ = 10−3 1.98E−3 3.16E−4 5.77E−5 1.26E−5 3.18E−6 9.28E−7 3.70E−7 2.65E−7
τ = 10−4 1.98E−3 3.16E−4 5.77E−5 1.26E−5 3.18E−6 8.94E−7 2.74E−7 9.13E−8

Table 16
The point-wise numerical errors for solution (4.35).

N = 20 N = 40 N = 60 N = 80 N = 100 N = 120 N = 140 N = 160

τ = 10−1 1.56E−3 1.56E−3 1.56E−3 1.60E−3 1.59E−3 1.60E−3 1.59E−3 1.60E−3
τ = 10−2 1.47E−3 2.49E−4 4.66E−5 1.74E−5 1.73E−5 1.74E−5 1.73E−5 1.74E−5
τ = 10−3 1.48E−3 2.49E−4 4.67E−5 1.04E−5 2.65E−6 7.53E−7 2.33E−7 1.75E−7
τ = 10−4 1.48E−3 2.49E−4 4.68E−5 1.04E−5 2.65E−6 7.53E−7 2.33E−7 7.74E−8

Table 17
The global weighted numerical errors for solution (4.36).

N = 20 N = 40 N = 60 N = 80 N = 100 N = 120 N = 140 N = 160

τ = 10−1 2.92E−3 1.91E−3 1.89E−3 1.89E−3 1.89E−3 1.89E−3 1.89E−3 1.89E−3
τ = 10−2 2.32E−3 2.35E−4 4.22E−5 2.15E−5 2.03E−5 2.02E−5 2.02E−5 2.01E−5
τ = 10−3 2.33E−3 2.35E−4 3.72E−5 7.55E−6 1.83E−6 5.37E−7 2.52E−7 2.08E−7
τ = 10−4 2.33E−3 2.35E−4 3.72E−5 7.55E−6 1.82E−6 4.97E−7 1.49E−7 4.87E−8

Table 18
The point-wise numerical errors for solution (4.36).

N = 20 N = 40 N = 60 N = 80 N = 100 N = 120 N = 140 N = 160

τ = 10−1 1.64E−3 1.64E−3 1.73E−3 1.70E−3 1.72E−3 1.74E−3 1.70E−3 1.72E−3
τ = 10−2 1.72E−3 1.91E−4 3.10E−5 1.81E−5 1.86E−5 1.86E−5 1.82E−5 1.86E−5
τ = 10−3 1.74E−3 1.92E−4 3.11E−5 6.40E−6 1.55E−6 4.27E−7 1.83E−7 1.87E−7
τ = 10−4 1.74E−3 1.92E−4 3.11E−5 6.40E−6 1.55E−6 4.27E−7 1.29E−7 4.20E−8

Here, U(x, t) → 2πsgn(a) as x → ∞, and U(x, t) → −2πsgn(a) as x → −∞. In this case, we make the transformation
U(x, t) = V (x, t)+ 4 tan−1(sinh(x)).

Inserting the above expression into (4.16), we obtain the reformed equation for the unknown function V (x, t), with the
boundary condition V (x, t) → 0 as |x| → ∞. We use the spectral method similar to (4.19), to obtain the numerical solution
vN(x, t). Finally, the numerical solution of the original problem is given by uN(x, t) = vN(x, t)+ 4 tan−1(sinh(x)).

In Tables 15 and 16, we list the global weighted errors and the point-wise errors at t = 1, with a = 0.5, β = 1 and
γ = 0, vs. various modes N and step sizes τ , respectively. They indicate that the numerical errors decay as N increases and
τ decreases.

The third kind of solutions of the sine–Gordon equation (4.16) with f (x, t) ≡ 0 describe the kink solitons, namely,

U(x, t) = 4 tan−1

e
η(x−at)
√

1−a2


, |a| < 1, η = ±1. (4.36)

For η = 1, the solutions U(x, t) → 2π as x → ∞, and U(x, t) → 0 as x → −∞. If η = −1, then the solutions U(x, t) → 0
as x → ∞, and U(x, t) → 2π as x → −∞. In this case, we make the transformation

U(x, t) = V (x, t)+ 4 tan−1(eηx).
Inserting the above expression into (4.16), we obtain the reformed equation for the unknown function V (x, t), with the
boundary condition V (x, t) → 0 as |x| → ∞. We use the spectral method similar to (4.19), to obtain the numerical solution
vN(x, t). Finally, the numerical solution of original problem is given by uN(x, t) = vN(x, t)+ 4 tan−1(eηx).

In Tables 17 and 18, we list the global weighted errors and the point-wise errors at t = 1, with a = 0.5, η = 1, β = 1
and γ = 0, vs. various modes N and step sizes τ , respectively. They demonstrate again that the numerical errors decay as
N increases and τ decreases.

4.3. Other problems

The solutions of different practical problems possess different asymptotic behaviors. If the solution U ∼ |x|α for large |x|,
then U ∈ L2

|x|µ(Λ) for anyµ < −2α− 1. Such a solution could be approximated by the generalized Hermite approximation
with the weight function ωγ (x) = (1 + x2)−γ , γ ≥ −

1
2µ > α +

1
2 .
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We first consider the Harry-Dym equation:
∂t(U2(x, t))+ 2∂3x


1

U(x, t)


= 0, x ∈ Λ, t > 0,

U(x, t) → 1, as |x| → ∞, t > 0,
∂mx U(x, t) → 0, as |x| → ∞, t > 0,m = 1, 2, 3,
U(x, 0) = U0(x), x ∈ Λ,

where U0(x) is a continuous function and U0(x) → 1, as |x| → ∞. Since U(x, t) ∼ 1 at the infinity, the solution is in the
space L2

|x|µ(Λ), µ < −1. Thus, we could use the generalized Hermite orthogonal approximation with γ > 1
2 .

Next, let x = (x1, x2, . . . , xm)T and the m-dimensional infinite channel Ωm = {x | −1 < xi < 1 for 1 ≤ i ≤

m − 1, and − ∞ < xm < ∞}. The velocity U(x, t) = (U1(x, t),U2(x, t), . . . ,Um(x, t))T . The pressure is denoted by
P(x, t). ν is the kinetic viscosity. We consider the incompressible fluid flow in the channel:∂tU(x, t)+ (U(x, t) · ∇)U(x, t)− ν△U(x, t)+ ∇P(x, t) = f(x, t), x ∈ Ωm, t > 0,

∇ · U(x, t) = 0, x ∈ Ω̄m, t ≥ 0,
U(x, 0) = U0(x), x ∈ Ω̄m.

According to the mechanical principle, we impose the following boundary condition at the infinity as usual,

U ∼
1

ln |xm|
form = 2, U ∼

1
|xm|

for m = 3.

Thus, U is in the space (L2
|x|µ(Λ))

m whereµ < −1 form = 2, andµ < 1 form = 3. Therefore, we could use the generalized
Hermite orthogonal approximation in the xm-direction, where γ > 1

2 for m = 2 and γ > −
1
2 for m = 3. Meanwhile, we

use the Legendre orthogonal approximation in the other directions.
Third, we consider the Klein–Gordon equation:

∂2t U(x, t)+
1
2
U(x, t)− U3(x, t)− ∂2x U(x, t) = 0,

which has the bell soliton solution as

U(x, t) = − sech


x − at
√
2 − 2a2


, |a| < 1.

In this case, U(x, t) decays exponentially, and so belongs to the space (L2
|x|µ(Λ))

m, µ being an arbitrary real number.
Consequently, we could adopt the generalized Hermite orthogonal approximation with any real number γ .

The solutions of many practical problems, such as the heteroclinic solutions in biology and the kink solitons in quantum
mechanics, behave differently at the different endpoints of the infinite interval. In those cases, it seems better to use the
generalized Hermite orthogonal approximation with the weight function (1 +

2
π
arctan x)−2α(1 −

2
π
arctan x)−2γ , α and γ

being certain real numbers. By adjusting the parameters α and γ suitably, it may simulate different asymptotic behaviors
of approximated functions at the different endpoints.

5. Concluding remarks

In this paper, we introduced the new orthogonal system with the weight function (1 + x2)−γ , γ being any real number.
By adjusting the parameter γ suitably, such system may simulate the asymptotic behaviors of approximated functions
reasonably. We established the basic results on the corresponding orthogonal approximation and interpolation, which play
important roles in the spectral and pseudospectral methods for various problems defined on the whole line and the related
multiple-dimensional unbounded domains. As examples of applications, we provided the spectral schemes for a linear
problem and the sine–Gordon equation. We proved their spectral accuracy in space. The numerical results demonstrated
the efficiency of the suggested algorithms, and coincided well with the analysis. In particular, the proposed approaches not
only possess the spectral accuracy in the global weighted norms, but also possess the small point-wise numerical errors.

It is noted that Guo and Shen [13], and Guo and Zhang [14] provided the Jacobi irrational spectral method and the
generalized Laguerre spectralmethod for the half line, while Guo and Yi [12], and Yi and Guo [15] considered the generalized
Jacobi rational spectral methods for infinite intervals. We also refer the reader to the recent review paper of Guo [16].
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