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Abstract In this paper, we propose efficient space-time spectral methods for problems on
unbounded domains. For this purpose, we first introduce two series of new basis functions
on the half/whole line by matrix decomposition techniques. The new basis functions are
mutually orthogonal in both L2 and H1 inner products, and lead to diagonal systems for
second order problems with constant coefficients. Then we construct efficient space-time
spectral methods based on Laguerre/Hermite-Galerkin methods in space and dual-Petrov-
Galerkin formulations in time for problems defined on unbounded domains. Using these
suggested methods, higher accuracy can be obtained. We also demonstrate that the use of
simultaneously orthogonal basis functions in space may greatly simplify the implementation
of the space-time spectral methods.
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1 Introduction

The spectral method possesses high accuracy, and so plays an important role in numerical
solutions of differential and integral equations, see [2–4,6,8,9,15,22] and the references
therein. As we know, the Fourier system {eikx } is the most desirable basis owing to the
facts: (i) the availability of Fast Fourier transform (FFT); and (ii) the diagonal mass and
stiff matrices under any linear differential operator with constant coefficients. However, it
is well-known that the Fourier method is only suitable for periodic problems due to the
Gibbs phenomena. For non-periodic problems, one has to select other kinds of orthogonal
polynomials, e.g. Jacobi, Laguerre or Hermite polynomials as basis functions, which are the
eigenfunctions of certain singular Sturm–Liouville problems.

During the past decades, more and more attentions were paid to various problems defined
on unbounded domains. The Laguerre and Hermite spectral methods have been widely used
for solving differential equations on unbounded (or even exterior) domains, see [12,13,18,
19,21,24,29,30] and the references therein.

Laguerre/Hermite spectral-Galerkin methods with compact combinations of orthogonal
systems (cf. [21]) lead to optimal algorithms in terms of both conditioning and finite banded
structures of the linear systems. For example, the integrated Laguerre polynomial basis [21]
leads to a diagonal stiffness matrix and penta-diagonal mass matrix for the differential oper-
ator Lλ[u] = u′′ − λ2u (with constant λ and homogeneous Dirichlet boundary conditions).
However, in many situations, it is more advantageous to use Fourier-like basis functions. In
[23], a polynomial basis, which stems fromLegendre polynomials and ismutually orthogonal
in both L2 and H1 inner products, was constructed by solving discrete eigen-value problems
on finite domains. Such an eigen-basis leads to efficient spectral-element approaches on struc-
turedmeshes in [31]. The first objective of this paper is to find new kinds of Laguerre/Hermite
basis functions which are simultaneously orthogonal in both L2 and H1 inner products and
lead to diagonal systems for second order problems with constant coefficients on unbounded
domains.

For the time-dependent PDEs, high-order spectral methods in space coupled with a low-
order finite difference scheme in time always create a mismatch in accuracy. The accuracy
in time usually results in a severe time step restriction which may be prohibitive for higher-
order differential equations. Thus, for certain type of time-dependent PDEs, we should use
spectral methods for both space and time. Space-time spectral methods were initially pro-
posed in [26] for solving first order hyperbolic equation. They were further developed and
analyzed for parabolic equations [7,23,25,27] and advection-diffusion problems [1]. More
recently, space-time spectral methods were studied in detail for fractional equations. And we
also note that space-time spectral methods were extended to spectral or hp finite element
cases [20,32] for more flexibility. For more information, see [16,17,28] and the references
therein. The main objective of this paper is to propose efficient space-time spectral meth-
ods for problems on unbounded domains. For this purpose, we construct simultaneously
orthogonal Laguerre/Hermite basis functions on the half/whole line bymatrix decomposition
techniques, and then present efficient space-time spectral methods based on simultaneously
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orthogonal Laguerre/Hermite-Galerkin methods in space and a dual-Petrov-Galerkin formu-
lation in time for problems defined on unbounded domains. Using the suggested methods,
higher accuracy can be obtained. We also demonstrate that the use of simultaneously orthog-
onal Laguerre/Hermite basis functions in space may greatly simplify the implementation of
the space-time spectral methods.

The rest of this paper is organized as follows. In the next section, we construct a new
series of simultaneously orthogonal Laguerre functions on the half line, present the space-
time spectral method for a time-dependent problem and derive an optimal error estimate.
We also present some numerical results demonstrating the effectiveness of the proposed
approach. In Sect. 3, a new series of simultaneously orthogonal Hermite functions on the
whole line is given. As an example, we propose a new space-time spectral method for the
Black–Scholes-type equation and present some numerical results showing the high accuracy
of this new approach. The final section is for concluding remarks.

2 Simultaneously Orthogonal Basis Functions on the Half Line and Its
Applications

Let � = (0,+∞) and χ(x) be certain a weight function. For integer r ≥ 0, we define
the weighted Sobolev space Hr

χ (�) in the usual way, with the inner product (·, ·)r,χ,�, the
semi-norm | · |r,χ,� and the norm || · ||r,χ,�. In particular, the inner product and the norm of

L2
χ (�) are denoted by (·, ·)χ,� and ‖ · ‖χ,�, respectively. For simplicity, we denote

dkv

dxk
by

∂kx v. For integer r ≥ 1,

0H
r
χ (�) = {v ∈ Hr

χ (�) | ∂kx v(0) = 0, 0 ≤ k ≤ r − 1}.
We omit the subscript χ in notations whenever χ(x) ≡ 1.

2.1 The Generalized Laguerre Functions

The generalized Laguerre polynomial of degree l ≥ 0 is defined by (cf. [13])

L(α,β)
l (x) = 1

l! x
−αeβx∂ lx

(
xl+αe−βx

)
, α > −1, β > 0, (2.1)

which is the l-th eigenfunction of the following Sturm–Liouville problem,

∂x (x
α+1e−βx∂xv(x)) + λl x

αe−βxv(x) = 0 (2.2)

with the eigenvalue λl = βl.
They satisfy the following relations,

L(α,β)
l (x) = L(α+1,β)

l (x) − L(α+1,β)
l−1 (x), l ≥ 1, (2.3)

∂x L
(α,β)
l (x) = −βL(α+1,β)

l−1 (x), l ≥ 1, (2.4)

−x∂x L
(α,β)
l (x) = (l + α)L(α,β)

l−1 (x) − l L(α,β)
l (x), l ≥ 1. (2.5)

Let ωα,β(x) = xαe−βx . We have
∫

�

L(α,β)
l (x)L(α,β)

l ′ (x)ωα,β(x)dx = γ
(α,β)
l δl,l ′ , (2.6)
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where δl,l ′ is the Kronecker function and

γ
(α,β)
l = �(l + α + 1)

βα+1l! . (2.7)

We next recall the generalized Laguerre functions. For any real number α > −1 and
β > 0, the generalized Laguerre functions are defined by (cf. [14])

L̂(α,β)
l (x) = e− β

2 x L(α,β)
l (x), l ≥ 0. (2.8)

In particular, if α = 0, we denote L̂β
l (x) = L̂(0,β)

l (x).

From (2.2), the function L̂(α,β)
l (x) is the l-th eigenfunction of the following Sturm–

Liouville problem,

∂x (x
α+1e−βx∂x (e

β
2 xv(x))) + λl x

αe− β
2 xv(x) = 0, l ≥ 0. (2.9)

Let ωα(x) = xα. By virtue of (2.6), the set of L̂(α,β)
l (x) forms a complete L2

ωα
(�)-

orthogonal system, i.e.
∫

�

L̂(α,β)
l (x)L̂(α,β)

l ′ (x)ωα(x)dx = γ
(α,β)
l δl,l ′ . (2.10)

Thus, for any v ∈ L2
ωα

(�), we have

v(x) =
∞∑
l=0

v̂
(α,β)
l L̂(α,β)

l (x) (2.11)

with

v̂
(α,β)
l = 1

γ
(α,β)
l

∫

�

v(x)L̂(α,β)
l (x)ωα(x)dx . (2.12)

Consider the following problem with homogeneous boundary conditions,
{−∂2x u(x) + u(x) = f (x), x ∈ �,

u(0) = 0, lim
x→+∞ u(x) = 0.

(2.13)

We usually use compact combinations of generalized Laguerre functions, which lead to
optimal algorithms in terms of both conditioning and finite banded structures of the linear
systems. Let

φk(x) = L̂β
k (x) − L̂β

k+1(x), k ≥ 0. (2.14)

It is obvious that φk(0) = 0. Let

VM = span{φ0, φ1, . . . , φM−1},
where M is a positive integer.

The Laguerre spectral-Galerkin approximation to (2.13) is to find uM ∈ VM such that

(∂xuM , ∂xψ)� + (uM , ψ)� = ( f, ψ)�, ∀ψ ∈ VM . (2.15)

We denote

a jk = (φk, φ j )�, b jk = (∂xφk, ∂xφ j )�,
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and introduce the matrices

A = (a jk)0≤k, j≤M−1, B = (b jk)0≤k, j≤M−1.

By using the properties (2.3) and (2.4), we can deduce that A is a symmetric tridiagonal

matrix, and B = β IM − β2

4
A with IM being the identity matrix of order M. Thus, the

corresponding matrix of the scheme (2.15) is tridiagonal, but not an identity (or diagonal)
matrix. In this section, our main aim is to construct new basis functions which lead to a
diagonal matrix.

2.2 Simultaneously Orthogonal Laguerre Functions on the Half Line

Since the matrix A (associated with the basis {φ j }) is a symmetric tridiagonal matrix, we
can easily compute its eigenpairs, which are all real and positive. Let Q = (qkj )k, j=0,...,M−1

be the matrix formed by the orthogonal eigenvectors of A and � = diag({γi }M−1
i=0 ) be the

diagonal matrix with main diagonal being the corresponding eigenvalues, i.e.

AQ = Q�, Qt Q = IM .

Since the matrix Q is nonsingular, the linear combination

ϕk(x) =
M−1∑
j=0

q jkφ j (x), 0 ≤ k ≤ M − 1 (2.16)

forms a new basis of VM satisfying the following properties,

(ϕl , ϕi )� =
M−1∑
k, j=0

qklq ji (φk, φ j )� =
M−1∑
k, j=0

q ji a jkqkl = (Qt AQ)il = γiδil , (2.17)

(∂xϕl , ∂xϕi )� =
M−1∑
k, j=0

qklq ji (∂xφk, ∂xφ j )� =
M−1∑
k, j=0

q ji b jkqkl

=
M−1∑
k, j=0

q ji

(
βδ jk − β2

4
a jk

)
qkl =

(
β − β2

4
γi

)
δil . (2.18)

From (2.17) and (2.18), we find that the new basis functions {ϕk}M−1
k=0 is mutually orthogonal

in both L2 and H1 inner products. In other words, the matrices A and B under this new basis
{ϕk}M−1

k=0 are both diagonal. An immediate consequence of (2.17)–(2.18) is that

(∂xϕl , ∂xϕi )� = γ −1
l

(
β − β2

4
γl

)
(ϕl , ϕi )�,

which implies

(∂xϕl , ∂xv)� = γ −1
l

(
β − β2

4
γl

)
(ϕl , v)�, ∀v ∈ VM . (2.19)
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2.3 Applications for Two Dimensional Problems

As an illustrative example, we consider the following problem:
⎧
⎪⎪⎨
⎪⎪⎩

−�u + αu = f, (x, y) ∈ � = � × �,

u(0, y) = u(x, 0) = 0,

lim
x→+∞ u(x, y) = lim

y→+∞ u(x, y) = 0,
(2.20)

where the data α and f are given such that the above problem is well-posed.
Let {ϕk, γk} be the same as before. Define the approximation space

VM = span{ϕk(x)ϕ j (y) : 0 ≤ k, j ≤ M − 1}. (2.21)

Thus, the Laguerre-Galerkin spectral scheme for (2.20) is to find uM ∈ VM such that

(∇uM ,∇v)� + α(uM , v)� = ( f, v)�, ∀v ∈ VM , (2.22)

where the inner product on � is defined by

(u, v)� =
∫

�

u(x, y)v(x, y)dxdy.

We expand the numerical solution as follows:

uM (x, y) =
M−1∑
k, j=0

ũk jϕk(x)ϕ j (y).

Substituting the above equation into (2.22) and taking v = ϕk′ϕ j ′ with k′, j ′ = 0, 1, . . . , M−
1, we get that

M−1∑
k, j=0

ũk j (∂xϕk, ∂xϕk′)�(ϕ j , ϕ j ′)� +
M−1∑
k, j=0

ũk j (ϕk, ϕk′)�(∂yϕ j , ∂yϕ j ′)�

+α

M−1∑
k, j=0

ũk j (ϕk, ϕk′)�(ϕ j , ϕ j ′)� = ( f, ϕk′ϕ j ′)�, k′, j ′ = 0, 1, . . . , M − 1.

(2.23)

Denote

akk′ = (ϕk, ϕk′)�, A = (akk′)0≤k,k′≤M−1,

bkk′ = (∂xϕk, ∂xϕk′)�, B = (bkk′)0≤k,k′≤M−1,

fk′ j ′ = ( f, ϕk′ϕ j ′)�, F = ( fk′ j ′)0≤k′, j ′≤M−1,

U = (ũk j )0≤k, j≤M−1.

Then, the above system (2.23) can be rewritten in the following compact form,

(αAU At + BU At + AUBt ) = F. (2.24)

Rewrite (2.24) in the following form of tensor product,

(αA ⊗ At + B ⊗ At + A ⊗ Bt )u = f , (2.25)

123



J Sci Comput (2017) 72:679–699 685

where

u = (ũ00, ũ10, . . . , ũM−1,0;
ũ01, ũ11, . . . ũM−1,1; . . . ; ũ0,M−1, ũ1,M−1, . . . , ũM−1,M−1)

t ,

f = ( f00, f10, . . . , fM−1,0;
f01, f11, . . . , fM−1,1; . . . ; f0,M−1, f1,M−1, . . . , fM−1,M−1)

t . (2.26)

Remark 2.1 In the algebraic system, the matrices A and B are both diagonal. Therefore, this
algorithm is easily implemented.

2.4 An Efficient Space-Time Laguerre-Legendre Spectral Method

In this subsection, we propose an efficient space-time spectral method based on Laguerre-
Legendre Galerkin method using simultaneously orthogonal functions (2.16) in space and a
dual-Petrov-Legendre-Galerkin formulation in time.

For simplicity, we consider the following time-dependent problem, and shift the time
interval to I = (−1, 1) :⎧⎪⎪⎨

⎪⎪⎩

∂t u(x, t) − ∂2x u(x, t) + u(x, t) = f (x, t), (x, t) ∈ �1 = � × I,

u(0, t) = 0, lim
x→+∞ u(x, t) = 0, t ∈ (−1, 1],

u(x,−1) = u0(x), x ∈ �,

(2.27)

where � = (0,+∞) and f is a given function. Without loss of generality, we assume that
u0 = 0.

Let

S = {u | u ∈ C(I ) and u(−1) = 0},
S∗ = {u | u ∈ C(I ) and u(1) = 0},
Q = 0H

1(�) ⊗ S, Q̃ = 0H
1(�) ⊗ S∗.

The weak formulation of the problem (2.27) is to find u ∈ Q such that

(∂t u, v)�1 + (∂xu, ∂xv)�1 + (u, v)�1 = ( f, v)�1 , ∀v ∈ Q̃. (2.28)

Here, the space L2
ω(�1) is defined as usual, with the inner product (u, v)ω,�1 and the norm

‖u‖ω,�1 .

We introduce the following finite-dimensional spaces

VM = 0H
1(�) ∩ P̃M (�), SN = S ∩ PN (I ), S∗

N = S∗ ∩ PN (I ),

QM,N = VM ⊗ SN , Q̃M,N = VM ⊗ S∗
N ,

where PN (I )(resp. PM (�)) respect the space of polynomials of degree ≤ N on I (resp. of

degree ≤ M on �), and P̃M (�) = {e− β
2 xv | v ∈ PM (�)}.

The spectral scheme of the problem (2.27) is to seek uMN ∈ QM,N such that

(∂t uMN , ϕ)�1 + (∂xuMN , ∂xϕ)�1 + (uMN , ϕ)�1 = ( f, ϕ)�1 , ∀ϕ ∈ Q̃M,N . (2.29)

Since for any φ ∈ SN , we have
1 − t

1 + t
φ ∈ S∗

N . Hence, the scheme (2.29) can be rewritten

as the following weighted Galerkin formulation:

(∂t uMN , φ)χ1,−1,�1
+ (∂xuMN , ∂xφ)χ1,−1,�1

+ (uMN , φ)χ1,−1,�1

= ( f, φ)χ1,−1,�1
, ∀φ ∈ QM,N , (2.30)
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where χa,b(t) = (1 − t)a(1 + t)b is the Jacobi weight function.

Remark 2.2 We shall find that the formulation (2.29) is most suitable for numerical imple-
mentation, and the weighted Galerkin formulation (2.30) is more convenient for error
analysis.

2.5 Convergence Analysis

We first define the orthogonal projection in space 0π
1
M,β : 0H1(�) → VM as follows,

(∂x (0π
1
M,βv − v), ∂xφ)� = 0, ∀φ ∈ VM . (2.31)

As a specific case of Theorem 3.3 in [11], we have the following lemma.

Lemma 2.1 If v ∈ 0H1(�), ∂rx (e
β
2 xv) ∈ L2

ω−1+r,β
(�), and integers 1 ≤ r ≤ M + 1, then

‖∂x (0π1
M,βv − v)‖� ≤ c(βM)

1−r
2 ‖∂rx (e

β
2 xv)‖ω−1+r,β ,�. (2.32)

Following the same line of the proof of Theorem 3.3 in [11], we can derive that

‖0π1
M,βv − v‖� ≤ c(βM)−

r
2 ‖∂rx (e

β
2 xv)‖ω−1+r,β ,�. (2.33)

We now introduce the orthogonal projection in time P0,−1
N : L2

χ0,−1(I ) → SN , defined
by

(P0,−1
N v − v, φ)χ0,−1,I = 0, ∀φ ∈ SN . (2.34)

Denote

Ĥ1(I ) = H1(I ) ∩ L2
χ0,−2(I ).

It is clear that for anyψ ∈ S∗
N ,we have χ0,1∂tψ ∈ SN . This, along with the definition (2.34),

gives that for any v ∈ Ĥ1(I ) and ψ ∈ S∗
N ,

(
∂t

(
P0,−1
N v − v

)
, ψ

)
I

= −
(
P0,−1
N v − v, χ0,1∂tψ

)
χ0,−1,I

= 0. (2.35)

Consequently, we have the following approximation results from Theorem 1.1 in [10].

Lemma 2.2 If v ∈ L2
χ0,−1(I ) and ∂st v ∈ L2

χ s,s−1(I ), then

||∂ lt
(
P0,−1
N v − v

)
||χ l,l−1,I � Nl−s ||∂st v||χ s,s−1,I , l ≤ s, l = 0, 1. (2.36)

We next consider the convergence of the proposed scheme (2.29). Let u and uMN be the
solutions of (2.27) and (2.29), respectively, and

UMN = P0,−1
N 0π

1
M,βu = 0π

1
M,β P

0,−1
N u.

From (2.28) we obtain that

(∂tUMN , ϕ)�1 + (∂xUMN , ∂xϕ)�1 + (UMN , ϕ)�1 = ( f, ϕ)�1

+(∂t (UMN − u), ϕ)�1 + (∂x (UMN − u), ∂xϕ)�1 + (UMN − u, ϕ)�1 . (2.37)

Set eMN = UMN − uMN . By subtracting (2.37) from (2.29), we further derive that

(∂t eMN , ϕ)�1 + (∂x eMN , ∂xϕ)�1 + (eMN , ϕ)�1

= (∂t (UMN − u), ϕ)�1 + (∂x (UMN − u), ∂xϕ)�1 + (UMN − u, ϕ)�1 . (2.38)
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Due to (2.35) and (2.31), we deduce readily that

(∂t (UMN − u), ϕ)�1 = (∂t (0π
1
M,βu − u), ϕ)�1 ,

(∂x (UMN − u), ∂xϕ)�1 = (∂x (P
0,−1
N u − u), ∂xϕ)�1 .

Therefore, the equation (2.38) can be simplified to

(∂t eMN , ϕ)�1 + (∂x eMN , ∂xϕ)�1 + (eMN , ϕ)�1

= (∂t (0π
1
M,βu − u), ϕ)�1 + (∂x (P

0,−1
N u − u), ∂xϕ)�1 + (UMN − u, ϕ)�1 . (2.39)

Taking ϕ = 1 − t

1 + t
eMN ∈ Q̃M,N in the above equation, due to the fact

(∂t eMN , eMN )χ1,−1,�1
= 1

2

∫

�1

(∂t e
2
MN )χ1,−1dtdx = ||eMN ||2

χ0,−2,�1
,

we derive from the Cauchy–Schwartz inequality that

||eMN ||χ0,−2,�1
+ ||∂x eMN ||χ1,−1,�1

+ ||eMN ||χ1,−1,�1

� ||∂t
(
0π

1
M,βu − u

)
||χ2,0,�1

+ ||∂x
(
P0,−1
N u − u

)
||χ1,−1,�1

+||UMN − u||χ1,−1,�1
. (2.40)

Moreover, by Lemmas 2.1 and 2.2, we get that for integers 2 ≤ r ≤ M + 2 and s ≥ 0,

||∂t
(
0π

1
M,βu − u

)
||χ2,0,�1

� (βM)
1−r
2 ||∂t∂r−1

x

(
e

βx
2 u

)
||L2

χ2,0
(I ;L2

ω−2+r,β
(�)), (2.41)

||∂x
(
P0,−1
N u−u

)
||χ1,−1,�1

� ||∂x
(
P0,−1
N u − u

)
||χ0,−1,�1

� N−s ||∂st ∂xu||L2
χs,s−1 (I ;L2(�)),

(2.42)

and

||UMN − u||χ1,−1,�1

� ||P0,−1
N (0π

1
M,βu − u)||χ0,−1,�1

+ ||P0,−1
N u − u||χ0,−1,�1

� ||0π1
M,βu − u||χ0,−1,�1

+ ||P0,−1
N u − u||χ0,−1,�1

� (βM)
1−r
2 ||∂r−1

x (e
βx
2 u)||L2

χ0,−1 (I ;L2
ω−2+r,β

(�)) + N−s ||∂st u||L2
ωs,s−1 (I ;L2(�)). (2.43)

For notional convenience, we introduce the spaces Ar (�1) and Bs(�1) associated with
the norms as follows,

||u||Ar (�1) =
(
||∂t∂r−1

x

(
e

βx
2 u

)
||2
L2

χ2,0

(
I ;L2

ω−2+r,β
(�)

) + ||∂r−1
x

(
e

βx
2 u

)
||2
L2

χ0,−1

(
I ;L2

ω−2+r,β
(�)

)

+||∂rx
(
e

βx
2 u

)
||2
L2

χ1,−1

(
I ;L2

ω−1+r,β
(�)

)
) 1

2
,

||u||Bs (�1) =
(
||∂st ∂xu||2

L2
χs,s−1(I ;L2(�))

+ ||∂st u||2
L2

χs,s−1(I ;L2(�))

) 1
2
.

Then, a combination of (2.40)–(2.43) leads to

||eMN ||χ0,−2,�1
+ ||∂x eMN ||χ1,−1,�1

� N−s ||u||Bs (�1) + (βM)
1−r
2 ||u||Ar (�1).
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On the other hand, using (2.42), Lemmas 2.1 and 2.2 again yields

||∂x (u −UMN )||χ1,−1,�1
� ||∂x (0π1

M,βu − u)||χ1,−1,�1
+ ||∂x 0π1

M,β(P0,−1
N u − u)||χ1,−1,�1

� ||∂x (0π1
M,βu − u)||χ1,−1,�1

+ ||∂x (P0,−1
N u − u)||χ1,−1,�1

� (βM)
1−r
2 ||∂rx (e

βx
2 u)||

L2
χ1,−1

(
I ;L2

ω−1+r,β
(�)

)

+N−s ||∂st ∂xu||L2
χs,s−1 (I ;L2(�)),

and

||u −UMN ||χ0,−1,�1
� ||P0,−1

N (0π
1
M,βu − u)||χ0,−1,�1

+ ||P0,−1
N u − u||χ0,−1,�1

� (βM)
1−r
2 ||∂r−1

x (e
βx
2 u)||

L2
χ0,−1

(
I ;L2

ω−2+r,β
(�)

)

+N−s ||∂st u||L2
χs,s−1 (I ;L2(�)).

The above estimates, together with the triangle inequality, lead to

Theorem 2.1 For any u ∈ L2
χ1,−1(I ; 0H1(�)) ∩ Ĥ1(I ; L2(�)) ∩ Ar (�1) ∩ Bs(�1) with

integers 2 ≤ r ≤ M + 1 and s ≥ 0,

||u − uMN ||χ0,−1,�1
+ ||∂x (u − uMN )||χ1,−1,�1

� N−s ||u||Bs (�1) + (βM)
1−r
2 ||u||Ar (�1).

(2.44)

2.6 Numerical Results

We now describe the numerical implementation and present some numerical results for
scheme (2.29). We choose the new basis functions {ϕk}M−1

k=0 defined in (2.16) for the space
discretization. As for the time discretization, we take {ξ j }N−1

j=0 and {ξ∗
j }N−1

j=0 as the basis
functions of SN and S∗

N , stated below,

ξ j (t) = L j (t) + L j+1(t) ∈ SN , ξ∗
j (t) = L j (t) − L j+1(t) ∈ S∗

N , (2.45)

where L j (x) is the Legendre polynomial of degree j. Accordingly, we define the following
finite-dimensional spaces,

QM,N = span{ϕk(x)ξ j (t), k = 0, 1, . . . , M − 1, j = 0, 1, . . . , N − 1},
Q̃M,N = span{ϕk(x)ξ

∗
j (t), k = 0, 1, . . . , M − 1, j = 0, 1, . . . , N − 1}.

In actual computation, we expand the numerical solution as

uMN (x, t) =
M−1∑
k=0

N−1∑
j=0

ũk jϕk(x)ξ j (t) ∈ QM,N .

Substituting the above expression into the scheme (2.29) and taking ϕ(x, t) = ϕk′(x)ξ∗
j ′(t)

with k′ = 0, 1, . . . , M − 1 and j ′ = 0, 1, . . . , N − 1, we obtain

M−1∑
k=0

N−1∑
j=0

(
ak′kd j ′ j + bk′kc j ′ j + ak′kc j ′ j

)
ũk j = fk′ j ′ , (2.46)
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where

ak′k = (ϕk, ϕk′)�, bk′k = (∂xϕk, ∂xϕk′)�, c j ′ j = (ξ j , ξ
∗
j ′)I ,

d j ′ j = (ξ ′
j , ξ

∗
j ′)I , fk′ j ′ = ( f, ϕk′ξ∗

j ′)�1 .

We can rewrite the system (2.46) in a compact matrix form. To do this, we introduce the
matrices

A = (ak′k)0≤k′,k≤M−1, B = (bk′k)0≤k′,k≤M−1, C = (c j ′ j )0≤ j ′, j≤N−1,

D = (d j ′ j )0≤ j ′, j≤N−1, F = ( fk′ j ′)0≤k′≤M−1,0≤ j ′≤N−1,

U = (ũk j )0≤k≤M−1,0≤ j≤N−1.

Thus, the system (2.46) becomes

AUDt + BUC t + AUC t = F, (2.47)

which is also equivalent to the following form of tensor product,

(A ⊗ Dt + B ⊗ C t + A ⊗ C t )u = f , (2.48)

where

u = (ũ00, ũ10, . . . , ũM−1,0;
ũ01, ũ11, . . . ũM−1,1; . . . ; ũ0,N−1, ũ1,N−1, . . . , ũM−1,N−1)

t ,

f = ( f00, f10, . . . , fM−1,0;
f01, f11, . . . , fM−1,1; . . . ; f0,N−1, f1,N−1, . . . , fM−1,N−1)

t . (2.49)

Remark 2.3 According to (2.17) and (2.18), the matrices A and B in the compact form

(2.48) are diagonal with A = diag({γi }M−1
i=0 ) and B = diag({β − β2

4
γi }M−1

i=0 ). On the other

hand, the matrices C and D can be derived explicitly from the properties of the Legendre
polynomials (see Appendix of this paper), i.e.

c j ′ j =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

2
2 j+3 , j = j ′ − 1,

4
(2 j+1)(2 j+3) , j = j ′,
− 2

2 j+1 , j = j ′ + 1,
0, otherwise,

and D = 2IN . Thus, the system (2.47) is reduced to

(
2γk IN +

(
β +

(
1 − β2

4

)
γk

)
C t )uk = fk, k = 0, 1, . . . , M − 1 (2.50)

with

uk = (ũk,0, ũk,1, . . . , ũk,N−1)
t , fk = ( fk,0, fk,1, . . . , fk,N−1)

t ,

which can be solved efficiently.

Next, let {xk}Mk=0 be the Laguerre-Gauss-Radau quadrature points on the interval �, and
{t j }Nj=0 be the Legendre-Gauss-Lobatto quadrature points on the interval I . We measure the
numerical accuracy by the maximum error, which is defined by

||u − uMN ||M,N ,max = max
0≤k≤M,0≤ j≤N

|u(xk, t j ) − uMN (xk, t j )|.
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Table 1 The numerical errors of scheme (2.47) with fixed N = 14

M = 20 M = 40 M = 60 M = 80 M = 100

β = 1 1.08e−03 1.24e−05 1.16e−07 1.19e−09 2.70e−11

β = 2 3.32e−05 1.15e−08 6.10e−12 3.83e−15 5.61e−15

β = 3 3.49e−06 2.16e−10 2.01e−14 2.78e−15 3.61e−15

Table 2 The numerical errors of scheme (2.47) with fixed M = 70

N = 4 N = 6 N = 8 N = 10 N = 12 N = 14

β = 1 8.86e−03 7.87e−05 3.35e−07 1.68e−08 1.68e−08 1.68e−08

β = 2 9.05e−03 7.70e−05 3.35e−07 8.70e−10 1.51e−12 1.24e−13

β = 3 9.08e−03 7.75e−05 3.36e−07 8.68e−10 1.51e−12 2.16e−15

Table 3 The numerical comparisons of two different schemes in time

Crank–Nicolson scheme in time Scheme (2.47) with N = 14

M = 20 M = 60 M = 100 M = 20 M = 60 M = 100

β = 1 1.06e−03 2.33e−07 2.32e−07 1.08e−03 1.16e−07 2.70e−11

β = 2 3.29e−05 2.39e−07 2.36e−07 3.32e−05 6.10e−12 5.61e−15

β = 3 3.48e−06 2.39e−07 2.39e−07 3.49e−06 2.01e−14 3.61e−15

We first take the test function

u(x, t) = e−x sin 2x sin(1 + t), (x, t) ∈ �1,

which decays exponentially as x goes to infinity. To examine the errors of space discretization,
we fix N = 14 in time. In Table1, we list the errors with various M (the degree of basis
functions in space) and β. The results indicate that the errors decay exponentially as M
increases. Also, a suitable choice of parameter β leads to more accurate numerical results.
These facts coincide well with our theoretical analysis. On the other hand, in order to examine
the errors of time discretization, we fix M = 70 in space. In Table2, we present the values
of ||U − uMN ||M,N ,max versus N (the degree of basis functions in time) and β, which also
indicates an exponential convergence.

For numerical comparisons, we also employ second order Crank–Nicolson scheme
for time discretization with time step size 0.001. In Table3, we list the values of ||u −
uMN ||M,N ,max. They demonstrate that scheme (2.47) with N = 14 provides more accurate
numerical results than the Crank–Nicolson scheme in time.

We next take the test function

u(x, t) = sin x

(1 + x)3
sin(1 + t), (x, t) ∈ �1,

which decays algebraically as x goes to infinity.
In Table4, we fix N = 14 in time and list the numerical errors in different M and β. They

indicate that the errors decay algebraically, which also coincide well with our theoretical
analysis. Besides, for examining the errors of time discretization, we fix M = 60 in space.
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Table 4 The numerical errors of scheme (2.47) with fixed N = 14

M = 20 M = 60 M = 100 M = 140 M = 180

β = 1 7.02e−04 1.06e−06 2.70e−07 9.39e−08 4.43e−08

β = 2 1.74e−05 8.74e−07 2.03e−07 7.90e−08 3.83e−08

β = 3 2.83e−05 1.76e−06 3.18e−07 1.45e−07 6.27e−08

Table 5 The numerical errors of scheme (2.47) with fixed M = 60

N = 4 N = 6 N = 8 N = 10 N = 12 N = 14

β = 1 2.68e−03 2.92e−05 1.06e−06 1.06e−06 1.06e−06 1.06e−06

β = 2 2.71e−03 2.84e−05 8.74e−07 8.74e−07 8.74e−07 8.74e−07

β = 3 2.77e−03 2.83e−05 1.76e−06 1.76e−06 1.76e−06 1.76e−06

Table 6 The numerical comparisons of two different schemes in time

Crank–Nicolson scheme Scheme (2.47) with N = 14

M = 20 M = 60 M = 100 M = 20 M = 60 M = 100

β = 1 1.16e−03 8.14e−05 2.00e−05 7.02e−04 1.06e−06 2.70e−07

β = 2 3.29e−04 2.32e−05 5.22e−06 1.74e−05 8.74e−07 2.03e−07

β = 3 3.48e−04 1.94e−05 4.65e−06 2.83e−05 1.76e−06 3.18e−07

In Table5, we make a list of the errors versus N and β, which indicates again an algebraical
rate of convergence.

For numerical comparisons, we use second order Crank–Nicolson scheme in time again
with time step size 0.001. In Table6, we list the maximum errors with the same values of
M in the two cases. They show that scheme (2.47) with N = 14 provides more accurate
numerical results than the Crank–Nicolson scheme in time.

3 Simultaneously Orthogonal Hermite Functions on the Whole Line and
Their Applications

Let R = (−∞,+∞) and �2 = I × R. We define as usual L2
ω(R) (L2

ω(�2)), with the inner
product (u, v)ω,R ((u, v)ω,�2 ).

3.1 The Generalized Hermite Functions

Let Hl(x) be the standard Hermite polynomial of degree l. For any β > 0, the generalized
Hermite functions are given by (cf. [30])

Hβ
l (x) = 1√

2l l!e
− 1

2 β2x2Hl(βx), l ≥ 0.

They are the eigenfunctions of the following singular Sturm–Liouville problem,

e
1
2 β2x2∂x (e

−β2x2∂x (e
1
2 β2x2v(x))) + λ

β
l v(x) = 0, λ

β
l = 2β2l, l ≥ 0. (3.1)
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The set of Hβ
l (x) forms a complete L2(R)-orthogonal system, i.e.

∫

R

Hβ
l (x)Hβ

m (x)dx =
√

π

β
δl,m . (3.2)

They also satisfy the following relation,

∫

R

∂x H
β
l (x)∂x H

β
m (x)dx =

⎧
⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

−β

2

√
π(l + 1)(l + 2), l = m − 2,

√
πβ(l + 1

2
), l = m,

−β

2

√
πl(l − 1), l = m + 2,

0, otherwise.

(3.3)

For any v ∈ L2(R), we have

v(x) =
∞∑
l=0

v
β
l H

β
l (x) (3.4)

with

v
β
l = β√

π

∫

R

v(x)Hβ
l (x)dx .

Consider the following problem on the whole line,
{−∂2x u(x) + u(x) = f (x), x ∈ R,

lim
x→±∞ u(x) = 0,

(3.5)

where f is given such that the above problem is well-posed. Let

VM = span{Hβ
l (x), 0 ≤ l ≤ M}.

The Hermite spectral-Galerkin approximation to (3.5) is to find uM ∈ VM such that

(∂xuM , ∂xψ)R + (uM , ψ)R = ( f, ψ)R, ∀ψ ∈ VM . (3.6)

Denote

a jk = (Hβ
k , Hβ

j )R, b jk = (∂x H
β
k , ∂x H

β
j )R,

and introduce the matrices

A = (a jk)0≤k, j≤M , B = (b jk)0≤k, j≤M .

Then we have from (3.2) and (3.3) that A =
√

π

β
IM+1 and B is a symmetric penta-diagonal

matrix.

3.2 Simultaneously Orthogonal Hermite Functions on the Whole Line

We shall construct simultaneously orthogonal Hermite functions on the whole line according
to the structure of the mass and stiffness matrices.

Since the matrix B is a symmetric penta-diagonal matrix, we can easily compute its
eigenpairs, which are all real and positive. Let E = (ek j )k, j=0,...,M be the matrix formed by
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the orthogonal eigenvectors of B and � = diag({λi }Mi=0) be the diagonal matrix with main
diagonal being the corresponding eigenvalues, i.e.

BE = E�, Et E = IM+1,

where IM+1 stands for the identity matrix of order M + 1. Let

ψk(x) =
M∑
j=0

e jk H
β
j (x), 0 ≤ k ≤ M. (3.7)

Since the matrix E is nonsingular, the functions {ψk}Mk=0 form a new basis of VM satisfying
the following simultaneously orthogonal properties,

(ψl , ψi )R =
M∑

k, j=0

ekle ji
(
Hβ
k , Hβ

j

)
R

=
M∑

k, j=0

e ji a jkekl = (Et AE)il =
√

π

β
δil ,

(3.8)

(∂xψl , ∂xψi )R =
M∑

k, j=0

ekle ji
(
∂x H

β
k , ∂x H

β
j

)
R

=
M∑

k, j=0

e ji b jkekl = (Et BE)il = λiδil .

(3.9)

From (3.8) and (3.9), we find that the new basis functions {ϕk}M−1
k=0 is mutually orthogonal in

both L2 and H1 inner products. In other words, the matrices A and B under this new basis
{ψk}Mk=0 are both diagonal. An immediate consequence of (3.8)–(3.9) is that

(∂xψl , ∂xψi )R = λlβ√
π

(ψl , ψi )R,

which implies

(∂xψl , ∂xv)R = λlβ√
π

(ψl , v)R, ∀v ∈ VM . (3.10)

3.3 An Efficient Space-Time Hermite–Legendre Spectral Method

In this subsection, we propose an efficient space-time spectral method for Black–Scholes-
type equation based onHermite–LegendreGalerkinmethod using simultaneously orthogonal
Hermite functions (3.7) in space and a dual-Petrov-Legendre-Galerkin formulation in time.

Black–Scholes-type equation plays an important role in option pricing. In the classical
Black–Scholes–Merton framework, the stock price dynamics follows a geometric Brownian
motion, which has a continuous sample path,

ds = μsdt + σ sdBt .

Here, s is the stock price at time t , μ is the instantaneous expected return on the stock, σ

is the instantaneous volatility of the return, dBt is the standard Brownian motion or Weiner
process.

Let V (s, t) denote the price of a derivative security contingent at time t , T be the time
of expiration and K be the strike price. The standard Black–Scholes equation with terminal
condition is
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⎧⎨
⎩

∂t V (s, t)+ 1

2
σ 2s2∂2s V (s, t)+rs∂sV (s, t)−rV (s, t)=0, (s, t) ∈ (0,+∞)×(0, T ),

V (s, T ) = max(s − K , 0), s ∈ (0,+∞).

(3.11)

In this subsection, we consider the general problems as follows,

⎧⎪⎪⎨
⎪⎪⎩

∂t V (s, t) + 1

2
σ 2s2∂2s V (s, t) + rs∂s V (s, t) − rV (s, t) = F(s, t), (s, t) ∈ (0, +∞) × (0, T ),

V (0, t) = 0, lim
s→+∞ V (s, t) = 0, t ∈ (0, T ),

V (s, T ) = uT (s), s ∈ (0, +∞),

(3.12)

where F is a given function. Taking the transformation

x = ln s, τ = − 2

T
t + 1,

the problem (3.12) becomes the following equation with constant coefficients,

⎧⎪⎪⎨
⎪⎪⎩

T

2
∂τ u(x, τ ) − a∂2x u(x, τ ) − b∂x u(x, τ ) + cu(x, τ ) = f (x, τ ), (x, τ ) ∈ �2 = R × I,

lim
x→±∞ u(x, τ ) = 0, τ ∈ Ī ,

u(x, −1) = ũT (x), x ∈ R,

(3.13)

where a = σ 2

2
, b = r − σ 2

2
and c = r. For simplicity, we assume that ũT (x) = 0. Let

Q = H1(R) ⊗ S, Q̃ = H1(R) ⊗ S∗,

where S and S∗ are defined as before. The weak formulation of the problem (3.13) is to find
u ∈ Q such that

T

2
(∂τu, v)�2 + a(∂xu, ∂xv)�2 − b(∂xu, v)�2 + c(u, v)�2 = ( f, v)�2 , ∀v ∈ Q̃.

(3.14)

We introduce the following finite-dimensional spaces,

QM,N = VM ⊗ SN , Q̃M,N = VM ⊗ S∗
N .

The spectral scheme of the problem (3.13) is to seek uMN ∈ QM,N such that

T

2
(∂τuMN , ϕ)�2 + a(∂xuMN , ∂xϕ)�2 − b(∂xuMN , ϕ)�2 + c(uMN , ϕ)�2

= ( f, ϕ)�2 , ∀ϕ ∈ Q̃M,N . (3.15)

Remark 3.1 Since the error analysis of scheme (3.15) is quite similar to that of scheme (2.29),
we omit the details here.

We now describe the numerical implementation for scheme (3.15). We choose the simul-
taneously orthogonal Hermite basis functions {ψk}Mk=0 in (3.7) for the space discretization.
As for the time discretization, we take {ξ j }N−1

j=0 and {ξ∗
j }N−1

j=0 as the basis functions of SN and
S∗
N defined in (2.45). Accordingly, we denote the finite-dimensional spaces,

QM,N = span{ψk(x)ξ j (τ ), k = 0, 1, . . . , M, j = 0, 1, . . . , N − 1},
Q̃M,N = span{ψk(x)ξ

∗
j (τ ), k = 0, 1, . . . , M, j = 0, 1, . . . , N − 1}.
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In actual computation, we expand the numerical solution as

uMN (x, τ ) =
M∑
k=0

N−1∑
j=0

ũk jψk(x)ξ j (τ ) ∈ QM,N .

Substituting the above expression into the scheme (3.15), and taking ϕ(x, τ ) = ψk′(x)ξ∗
j ′(τ )

with k′ = 0, 1, . . . , M and j ′ = 0, 1, . . . , N − 1, we obtain

M∑
k=0

N−1∑
j=0

(T
2
ak′kh j ′ j + ack′kd j ′ j − bbk′kd j ′ j + cak′kd j ′ j

)
ũk j = fk′ j ′ , (3.16)

where

ak′k = (ψk, ψk′)R, bk′k = (∂xψk, ψk′)R, ck′k = (∂xψk, ∂xψk′)R,

d j ′ j = (ξ j , ξ
∗
j ′)I , h j ′ j = (ξ ′

j , ξ
∗
j ′)I , fk′ j ′ = ( f, ψk′ξ∗

j ′)�2 .

We can rewrite the system (3.16) in a compact matrix form. To do this, we introduce the
matrices

A = (ak′k)0≤k′,k≤M , B = (bk′k)0≤k′,k≤M , C = (ck′k)0≤k′,k≤M ,

D = (d j ′ j )0≤ j ′, j≤N−1, H = (h j ′ j )0≤ j ′, j≤N−1, F = ( fk′ j ′)0≤k′≤M,0≤ j ′≤N−1,

U = (ũk j )0≤k≤M,0≤ j≤N−1.

Thus, the system (3.16) becomes

T

2
AUH t + aCUDt − bBUDt + cAUDt = F, (3.17)

which is also equivalent to the following form of tensor product,
(
T

2
A ⊗ H t + aC ⊗ Dt − bB ⊗ Dt + cA ⊗ Dt

)
u = f , (3.18)

where

u = (ũ00, ũ10, . . . , ũM,0; ũ01, ũ11, . . . ũM,1; . . . ; ũ0,N−1, ũ1,N−1, . . . , ũM,N−1)
t ,

f = ( f00, f10, . . . , fM,0; f01, f11, . . . , fM,1; . . . ; f0,N−1, f1,N−1, . . . , fM,N−1)
t . (3.19)

Remark 3.2 According to (3.8) and (3.9), thematrices A andC in the compact form (3.18) are

diagonal with A = diag({
√

π

β
}) and C = diag({λi }Mi=0). On the other hand, the matrices

D and H can be derived explicitly from the properties of the Legendre polynomials (see
Appendix of this paper), i.e.

d j ′ j =

⎧
⎪⎪⎪⎨
⎪⎪⎪⎩

2
2 j+3 , j = j ′ − 1,

4
(2 j+1)(2 j+3) , j = j ′,
− 2

2 j+1 , j = j ′ + 1,
0, otherwise,

and H = 2IN . The system (3.18) can be solved efficiently.

123



696 J Sci Comput (2017) 72:679–699

3.4 Numerical Results

In this subsection, we present some numerical results to show the efficiency of the proposed
method for (3.13).

Let {xk}Mk=0 be the Hermite-Gauss quadrature points, and {t j }Nj=0 be the Legendre-Gauss-
Lobatto quadrature points on the interval I . We measure the numerical accuracy by the
maximum error, which is defined by

||u − uMN ||M,N ,max = max
0≤k≤M,0≤ j≤N

|u(xk, t j ) − uMN (xk, t j )|.

In actual computation, let a = c = 1 and b = 0. We first take the exact solution

u(x, τ ) = e−x2 sin 2x sin(1 + τ), (x, τ ) ∈ �2,

which decays exponentially as x goes to infinity. To examine the errors of space discretization,
we fix N = 16 in time. In Table7, we list the errors with different M and β. The results
indicate that the errors decay exponentially as M increases. We note that higher accuracy is
achieved with a suitable choice of parameter β. Next, in order to measure the errors of time
discretization,wefixM = 30 in space. InTable8,wepresent the values of ||u−uMN ||M,N ,max

versus N and β, which also shows an exponential convergence.
For numerical comparisons, we also employ second order Crank–Nicolson scheme

for time discretization with time step size 0.001. In Table9, we list the values of ||u −
uMN ||M,N ,max. They demonstrate that scheme (3.17) with N = 16 provides more accurate
numerical results than the Crank–Nicolson scheme in time.

Table 7 The numerical errors of scheme (3.17) with fixed N = 16

M = 20 M = 40 M = 60 M = 80 M = 100

β = 0.5 3.29e−01 1.95e−02 1.89e−03 2.00e−04 2.22e−05

β = 1 8.66e−05 1.18e−08 1.36e−12 2.00e−15 2.66e−15

β = 1.5 7.12e−14 3.22e−15 2.22e−15 2.89e−15 2.82e−15

Table 8 The numerical errors of scheme (3.17) with fixed M = 30

N = 4 N = 6 N = 8 N = 10 N = 12 N = 14

β = 0.5 9.33e−02 7.96e−02 8.09e−02 8.03e−02 8.07e−02 8.06e−02

β = 1 1.56e−02 1.63e−04 1.04e−06 9.53e−07 9.55e−07 9.53e−07

β = 1.5 1.63e−02 1.66e−04 7.78e−07 2.11e−09 3.78e−12 5.66e−15

Table 9 The numerical comparisons of two different schemes in time

Crank–Nicolson scheme in time Scheme (3.17) with N = 16

M = 20 M = 60 M = 100 M = 20 M = 60 M = 100

β = 1 7.96e−05 3.05e−07 2.94e−07 8.66e−05 1.36e−12 2.66e−15

β = 1.5 2.95e−07 3.04e−07 3.03e−07 7.12e−14 2.22e−15 2.82e−15

β = 2 3.14e−06 3.04e−07 3.05e−07 3.32e−06 4.66e−5 5.94e−15
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Table 10 The numerical errors of scheme (3.17) with fixed h = 3 and N = 16

M = 20 M = 60 M = 100 M = 140 M = 180

β = 1 1.87e−02 1.67e−04 6.85e−06 5.44e−07 6.21e−08

β = 1.5 6.22e−04 2.38e−06 5.69e−08 2.41e−07 1.67e−08

β = 2 6.58e−05 1.11e−05 3.11e−06 1.35e−06 8.20e−08

Table 11 The numerical errors of scheme (3.17) with fixed h = 5 and N = 16

M = 20 M = 60 M = 100 M = 140 M = 180

β = 1 5.72e−02 1.07e−03 5.23e−05 5.53e−06 7.31e−07

β = 1.5 3.46e−03 6.42e−06 9.19e−08 2.75e−09 1.30e−10

β = 2 1.40e−04 4.25e−08 1.16e−09 2.57e−10 1.08e−11

Table 12 The numerical errors of scheme (3.17) with fixed h = 5 and M = 140

N = 4 N = 6 N = 8 N = 10 N = 12

β = 1 2.17e−03 1.94e−05 5.53e−06 5.52e−06 5.51e−06

β = 1.5 2.36e−03 1.84e−05 7.06e−08 2.74e−09 2.75e−09

β = 2 2.34e−03 1.80e−05 7.04e−08 2.57e−10 2.57e−10

Table 13 The numerical comparisons of two different schemes in time

Crank–Nicolson scheme New scheme with N = 16

M = 20 M = 60 M = 100 M = 20 M = 60 M = 100

β = 1 6.74e−02 1.03e−03 4.72e−05 5.72e−02 1.07e−03 5.23e−05

β = 1.5 3.44e−03 5.93e−06 1.65e−07 3.46e−03 6.42e−06 9.19e−08

β = 2 1.30e−04 1.22e−07 8.88e−08 1.40e−04 4.25e−08 1.16e−09

We next take the exact solution

u(x, τ ) = sin x

(1 + x2)h
sin(1 + τ), (x, τ ) ∈ �2,

which decays algebraically as x goes to infinity.
In Table10, we take h = 3, N = 16 and list the numerical errors in different M and

β. They indicate that the errors decay algebraically. In Table11, we take h = 5, N = 16
and list the numerical errors in different M and β. They also indicate that the errors decay
algebraically. From Tables10 and 11, we find that higher accuracy can be achieved as h
increases. In addition, for examining the errors of time discretization, we fix M = 140 in
space. In Table12, we make a list of the errors versus N and β, which also indicates an
algebraical rate of convergence.

For numerical comparisons, we use second order Crank–Nicolson scheme in time again
with time step size 0.001 and h = 5. In Table13, we list the maximum errors with the
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Fig. 1 The graph of the numerical solution and the exact solution at t = T

same values of M in the two cases. They indicate that scheme (3.17) provides more accurate
numerical results than the Crank–Nicolson scheme in time.

Finally, we present some numerical results for European call options under the Black–
Scholes model (3.11) with the following benchmark parameters (see [5])

T = 0.25, K = 100, r = 0.05, σ = 0.15.

Fig. 1 shows the agreement between the numerical solution and the theoretical one and thus
demonstrates the effectiveness of our method for the benchmark problem.

4 Conclusion Remarks

In this paper, we constructed two series of simultaneously orthogonal basis functions on
the half/whole line by matrix decomposition techniques, which lead to diagonal systems for
second order problems with constant coefficients. We proposed efficient space-time spectral
methods basedon the simultaneously orthogonalLaguerre/Hermite-Galerkin scheme in space
and a dual-Petrov-Galerkin formulation in time for problems defined on unbounded domains.
Using these suggested methods, higher accuracy was achieved. Particularly, the use of the
simultaneously orthogonal basis functions in space may greatly simplify the implementation
of the space-time spectral methods.
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