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1 Introduction

The spectral method employs global orthogonal systems, e.g., Fourier complex exponentials
and orthogonal polynomials, as basis functions. It enjoys the remarkable “spectral accuracy”
(i.e., exponential order of convergence), if the underlying solution is smooth (and sufficiently
periodic in the Fourier case). Perhaps, the Fourier functions {eikx } are most desirable due
to (i) the availability of Fast Fourier transform (FFT), and (ii) the resultant of a diagonal
linear system for any linear differential operator with constant coefficients. However, it is
well known that the Fourier method is only applicable to periodic problems, as it has a very
poor convergence rate in non-periodic cases, owing to the Gibbs phenomena. In such cases,
one should use polynomial-based spectral algorithms using e.g., Chebyshev, Legendre or
Jacobi polynomials as basis functions, which are eigenfunctions of singular Sturm–Liouville
problems.

It is noteworthy that spectral-Galerkinmethods based on compact combinations of orthog-
onal polynomials [26], defined as generalised Jacobi polynomials [16,17], leading to optimal
algorithms in terms of both conditioning and finite banded coefficient matrices for linear
operators with constant coefficients. For example, the integrated Legendre polynomial basis
leads to a diagonal stiffness matrix and peta-diagonal mass matrix for the differential opera-
tor:Lλ[u] = u′′ −λ2u (with constant λ and homogeneous Dirichlet boundary conditions). In
practice, it is advantageous to have a Fourier-like polynomial basis. In [28], a polynomial basis
mutually orthogonal in both L2- and H1-inner products was constructed from solving dis-
crete eigen-value problems. Such an eigen-basis led to efficient spectral-element approaches
on structuredmeshes in [38].We remark that Livermore [22] consideredGalerkin-orthogonal
polynomials for spectral approximation in a more general setting.

The spectral collocation method is implemented in physical space, and has notable advan-
tages over the spectral-Galerkinmethod usingmodal basis in dealingwith variable coefficient
and nonlinear problems. However, the practitioners are plagued with the ill-conditioning of
the resulted linear systems. The construction of suitable preconditioners is an important
means to circumvent this barrier. Significant attempts include preconditioning by low-
order finite difference or finite elements (see e.g., [2,3,9,10,20,21]), or by integration (see,
e.g., [4,6,7,12,18,32,33]). In particular, from a suitable Birkhoff interpolation problem (cf.
[5,23,37]), a new polynomial basis could be constructed which led to well-conditioned col-
location schemes for boundary value problems. We also point out that a useful approach
pertinent to integration preconditioning is the spectral integration method (cf. [11,15,36])
via recasting a differential form into an integral form, and then approximating the solution
by orthogonal polynomials. Various interesting variants can be found in e.g., [13,14,24,25].

The main purpose of this paper is to pursuit new Fourier-like basis (mimic to the Galerkin
setting in [22,28]) for the collocation scheme. The significance is that under such a basis,
the collocation matrix of Lλ[u] for various boundary conditions becomes identity matrix
(see (2.22) below). In distinctive contrast to [22,28], the new basis herein is non-polynomial
and builds in the parameter λ intrinsically (e.g., the basis is highly oscillatory if λ = ik for
k � 1). We outline below some other important features of this development.

(i) Using the notion of Birkhoff interpolation as with [32], we construct a new basis {Q j }
from a (generalized) Birkhoff interpolation problem (see Theorem 2.2), which can be
explicitly obtained by inverting the operator Lλ. This allows for rapid evaluation of
the new basis by using a recursive convolution algorithm (see, e.g., [1]) in the offline
stage (cf. Subsect. 3.3). We can also show that the new basis has the approximability
to general functions in Sobolev spaces as good as orthogonal polynomials.
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(ii) It is known that for time-dependent nonlinear problems, semi-implicit time march-
ing schemes (i.e., treating nonlinear terms explicitly, but linear terms implicitly) are
preferable in practice. This often leads to solving elliptic boundary value problems with
parameter depending on 1/τ (τ is the time-stepping size) at each time step. For prob-
lems in one spatial dimension, our collocation scheme provides an explicit solver so
that the semi-implicit scheme appears like an “explicit” unconditionally stable scheme
(cf. Subsect. 5.2).

(iii) Equipped with the new basis, well-conditioned collocation methods can be constructed
for general second-order boundary value problems (BVPs) with exact imposition of
various boundary conditions. Different from [12,18,32] (where the preconditioners are
implemented on the highest derivative to make the corresponding matrix diagonal, so
the condition number for e.g., Lλ still depends on |λ|, e.g., the wavenumber), we can
choose the parameter λ and the conditioning of the system becomes independent of the
large or small parameter in the BVP. It is noteworthy that the limiting case λ → 0+,

corresponds to the approach in [32], which therefore aims at diagonalising the matrix
of the second-order derivative, and the new basis functions are polynomials. We also
reiterate that the technique and procedure for λ �= 0 herein is very different and much
more involved.

The rest of the paper is organised as follows. In Sect. 2, we introduce the new basis from
the perspective of generalised Birkhoff interpolation, and present its important properties.
We then describe a rapid and stable way to compute the new basis functions in Sect. 3. We
show in Sect. 4 the spectral approximation properties of the new basis. In the last section, we
apply the new collocation methods to solutions of various problems including the Helmholtz
equation with highly oscillatory solutions, Burgers equation, and two-dimensional elliptic
problems. We demonstrate the high accuracy and efficiency of the proposed approach.

2 New Non-polynomial Basis Functions

2.1 A General Setup

Consider the second-order linear differential operator:

Lλ[u](x) := u′′(x) − λ2u(x), x ∈ � := (−1, 1), (2.1)

where the constantλ �= 0.LetB± be two linear boundary operators imposed on the boundary-
value problem (BVP): {

Lλ[u](x) = f (x), x ∈ �;
B−[u] = g−, B+[u] = g+,

(2.2)

such that it has a unique solution for given integrable f and constants g±. Typically, we
consider

B±[u] = u(±1) or B±[u] = u′(±1) or B−[u] = u(−1), B+[u] = u′(1) + η u(1),
(2.3)

where η is a nonzero constant. For notational convenience, we define the integral operators:

I−
λ [ f ](x) = 1

2λ

∫ x

−1
e−λ(x−y) f (y) dy; I+

λ [ f ](x) = 1

2λ

∫ 1

x
e−λ(y−x) f (y) dy. (2.4)
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It is evident that(I−
λ [ f ])′ = −λ I−

λ [ f ] + 1

2λ
f ; (I+

λ [ f ])′ = λ I+
λ [ f ] − 1

2λ
f. (2.5)

The following solution formula of (2.2) can be derived from fundamental solution tech-
niques of ordinary differential equations in any standard textbook.

Proposition 2.1 The solution of the BVP (2.2) with λ �= 0 is given by

u(x) = L −1
λ [ f ](x) = C1 e

λ(1+x) + C2 e
−λ(1+x) − I−

λ [ f ](x) − I+
λ [ f ](x), (2.6)

where the constants C1 and C2 are uniquely determined by the boundary conditions in (2.2).
In particular, we have the formulas of C1 and C2 for the typical boundary conditions in (2.3)
given in Appendix 6.

Let {x j , ω j }Nj=0 (with x0 = −1 and xN = 1) be a set of Jacobi–Gauss–Lobatto (JGL)
points and quadrature weights (see Appendix 7). Assume that {x j } are arranged in ascending
order. Denote by PN be the set of all polynomials of degree at most N . Let {l j } be the
Lagrange interpolating basis polynomials associated with interior JGL points {x j }N−1

j=1 (i.e.,

zeros of ∂x P
(α,β)
N (x) with α, β > −1):

l j ∈ PN−2, l j (xi ) = δi j , 1 ≤ i, j ≤ N − 1. (2.7)

We look for a new basis {Q j }Nj=0 such that

• for 1 ≤ j ≤ N − 1,

Lλ[Q j ](x) = l j (x), x ∈ �; B±[Q j ] = 0; (2.8)

• for j = 0, N ,

Lλ[Q0](x) = 0, x ∈ �; B−[Q0] = 1, B+[Q0] = 0, (2.9)

and
Lλ[QN ](x) = 0, x ∈ �; B−[QN ] = 0, B+[QN ] = 1. (2.10)

The so-defined {Q j }Nj=0 can be uniquely determined by the solution formulas in Proposition
2.1 straightforwardly, as summarized below.

Theorem 2.1 Let {Q j }Nj=0 be the basis defined in (2.8)–(2.10). Then we have

• for 1 ≤ j ≤ N − 1,

Q j (x) = C1 j e
λ(1+x) + C2 j e

−λ(1+x) − I−
λ [l j ](x) − I+

λ [l j ](x), (2.11)

where the constants C1 j and C2 j can be computed by the formulas of C1 and C2 in
Proposition 2.1 and Appendix 6 with g± = 0 and f = l j .

• for j = 0,
Q0(x) = C10 e

λ(1+x) + C20 e
−λ(1+x), (2.12)

where C10 and C20 can be computed by the formulas of C1 and C2 in Proposition 2.1
and Appendix 6 with g− = 1 and g+ = f = 0.

• for j = N ,

QN (x) = C1N eλ(1+x) + C2N e−λ(1+x), (2.13)

where C1N and C2N can be computed by the formulas of C1 and C2 in Proposition 2.1
and Appendix 6 with g+ = 1 and g− = f = 0.
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Correspondingly, we define the finite dimensional vector space

QN := span
{
Q0, Q1, . . . , QN

}
. (2.14)

Remarkably, the new basis has direct bearing on a generalized Birkhoff interpolation problem
which we highlight below.

Theorem 2.2 Let {x j } be the JGL points. Consider the interpolation problem: given u ∈
C2(�̄), find q ∈ QN such that

Lλ[q](x j ) = Lλ[u](x j ), 1 ≤ j ≤ N − 1; B±[q] = B±[u]. (2.15)

Then the interpolant of u has the representation:

(IBNu)(x) = q(x) = B−[u] Q0(x) +
N−1∑
j=1

Lλ[u](x j )Q j (x) + B+[u] QN (x), (2.16)

where IBN : C2(�̄) → QN is the corresponding interpolation operator.

Proof Taking x = xi for 1 ≤ i ≤ N − 1 in (2.8)–(2.10), leads to⎧⎪⎨
⎪⎩
Lλ[Q j ](xi ) = δi j , 1 ≤ i, j ≤ N − 1, B±[Q j ] = 0, 1 ≤ j ≤ N − 1;
B−[Q0] = 1, B+[Q0] = 0, Lλ[Q0](xi ) = 0, 1 ≤ i ≤ N − 1;
B−[QN ] = 0, B+[QN ] = 1, Lλ[QN ](xi ) = 0, 1 ≤ i ≤ N − 1.

(2.17)

One verifies readily from the interpolating properties in (2.17) that q given by (2.16) satisfies
(2.15). It remains to show the uniqueness of q. Assume that p ∈ QN interpolates the same
set of data. Denoting e := q − p, we have

Lλ[e](x j ) = 0, 1 ≤ j ≤ N − 1; B±[e] = 0. (2.18)

Since e ∈ QN , we infer from (2.17) and (2.18) that e ≡ 0.

Some remarks are in order.

(i) The interpolant q interpolatesLλ[u] at the interior JGL points, rather than the function
or derivative values in the usual Birkhoff interpolation (cf. [23]). Moreover, the inter-
polant q is not a polynomial, if λ �= 0. In view of these, we dub (2.15) as a generalized
Birkhoff interpolation.

(ii) The interpolant q perfectly matches u at the boundary x = ±1, which allows for the
exact imposition of boundary conditions when u is approximated by q .

2.2 Important Properties

Let {h j } be the Lagrange interpolating basis polynomials associated with the JGL points
{x j }Nj=0, that is,

h j ∈ PN , h j (xi ) = δi j , 0 ≤ i, j ≤ N , (2.19)

which should be in contrast with {l j } defined in (2.7) (note: {l j } only involve the interior
JGL points). Let IN be the corresponding Lagrange interpolation operator (see Appendix 7).
Introduce the k-th order differentiation and integration matrices

D(k) = (
d(k)
i j

)
0≤i, j≤N , D(k)

in = (
d(k)
i j

)
1≤i, j≤N−1 where d(k)

i j = h(k)
j (xi ), (2.20)

Q(k) = (
q(k)
i j

)
0≤i, j≤N , Q(k)

in = (
q(k)
i j

)
1≤i, j≤N−1 where q(k)

i j = Q(k)
j (xi ), (2.21)
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where D = D(1), D(0) = IN+1, Q = Q(0), and Qin = Q(0)
in .

Theorem 2.3 Let IN−1 be the identity matrix of order N − 1. We have

Q(2)
in − λ2Qin = IN−1. (2.22)

Let IN be the JGL polynomial interpolation operator on (N + 1)-JGL points {x j }Nj=0 (cf.
(7.11)). Define the matrices L = (ci j )0≤i, j≤N and E = (εi j )0≤i, j≤N , where for 0 ≤ j ≤ N ,

ci j :=

⎧⎪⎨
⎪⎩
B−[h j ], i = 0,

Lλ[h j ](xi ), 1 ≤ i ≤ N − 1,

B+[h j ], i = N ;
εi j :=

⎧⎪⎨
⎪⎩
B−[IN Q j − Q j ], i = 0,

Lλ[IN Q j − Q j ](xi ), 1 ≤ i ≤ N − 1,

B+[IN Q j − Q j ], i = N .

Then we have
QL = IN+1 + E ≈ IN+1. (2.23)

Proof The identity (2.22) follows from (2.17) straightforwardly.
We now turn to (2.23). By the definition of IN , we can write

N∑
l=0

Q j (xl)hl(x) = IN Q j (x) = [
IN Q j − Q j

]
(x) + Q j (x), 0 ≤ j ≤ N . (2.24)

Acting the linear operators Lλ and B± on (2.24) leads to

N∑
l=0

Q j (xl)B−[hl ] = B−
[
IN Q j − Q j

] + B−[Q j ], (2.25)

N∑
l=0

Q j (xl)Lλ[hl ](x) = Lλ

[
IN Q j − Q j

]
(x) + Lλ[Q j ](x), (2.26)

N∑
l=0

Q j (xl)B+[hl ] = B+
[
IN Q j − Q j

] + B+[Q j ]. (2.27)

Thus, taking x = xi in (2.26), and using (2.17), we obtain the matrix identity in (2.23).
We next show that the entries εi j ≈ 0 for N � 1. Note that {εi j } involve up to second

derivatives of the JGL interpolation errors of {Q j } at the JGL points {xi }. Noting from
Theorem 2.1 that for fixed λ �= 0, {Q j } are analytic functions, we can characterize the
analyticity by the Bernstein ellipse Eρ (where ρ > 1 is the sum of two semi-axises, see e.g.,
[8]). Then by [34, Theorem. 4.1], we have the exponential convergence:

|εi j | ≤ CM

ρN
, 0 ≤ i, j ≤ N , (2.28)

where C is a constant multiple of certain algebraic power of N , and M = max j maxz∈Eρ

|Q j (z)|. Therefore, QL is nearly an identity matrix for large N .

Observe that L is the coefficient matrix of the system resulted from the usual collocation
method for (2.2). More precisely, given f ∈ C(�), the collocation scheme for (2.2) is to
find uN ∈ PN such that{

Lλ[uN ](x j ) = f (x j ), 1 ≤ j ≤ N − 1;
B−[uN ] = g−, B+[uN ] = g+.

(2.29)
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Fig. 1 Distribution of the largest and smallest eigenvalues of QL for various N with λ = 1. Left α = β =
−1/2; Right α = β = 0

Under the Lagrange polynomial basis {h j }, the matrix form is

L u = f , (2.30)

where

u = (
uN (x0), uN (x1), . . . , uN (xN )

)t
, f = (

g−, f (x1), . . . , f (xN−1), g+
)t

. (2.31)

The important implication of (2.23) is that Q offers a nearly optimal preconditioner for the
ill-conditioned system (2.30). More notably, it can precondition a general second-order BVP
with variable coefficients. On the other hand, the “inverse” matrix Q can be computed in a
stable and fast manner as to be shown in Sect. 3.

Note that under the Dirichlet boundary conditions (i.e., B−[u] = u(−1) or B+[u] =
u(1)), we augment the system in (2.30) by pretending u(±1) as unknown(s). As usual, we
can move them to the right-handed side of (2.30), and then we can precondition the system
by Qin defined in (2.21). Indeed, since Q j (±1) = 0 for 1 ≤ j ≤ N − 1, we obtain from
(2.26) that

Qin
(
D(2)
in − λ2 IN−1

) ≈ IN−1, N � 1. (2.32)

It is evident that a similar relation is available for the case involving the Dirichlet boundary
condition at only one endpoint.

We depict in Fig. 1 the distribution of the largest and smallest eigenvalues of QL at the
JGL points.We see that all their eigenvalues for various N are confined in [κmin, κmax], which
are concentrated around one for slightly large N . This agrees with (2.23).

2.3 Properties of (discrete) Eigenvalues

Consider the matrix eigenvalue problems:

Qinv = κQv, Q(2)
in v̂ = κ̂Q v̂, D(2)

in u = κLu, (2.33)

where (κQ, v), (κ̂Q, v̂) and (κL , u) are corresponding eigen-pairs. By (2.22) and (2.32),

κ̂Q − λ2κQ = 1; κQ(κL − λ2) ≈ 1, N � 1. (2.34)

It is known that the eigenvalues of D(2)
in are all real and distinct (cf. [35]), which implies the

eigenvalues of Qin and Q(2)
in are all real and distinct when N � 1.
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We next consider the model eigenvalue problem:

u′′(x) = κu(x), x ∈ �; u(±1) = 0, (2.35)

whose eigen-pairs are

κ j = − j2π2

4
, u j (x) =

{
cos

( 1
2 jπx

)
, j odd,

sin
( 1
2 jπx

)
, j even,

j = 1, 2, . . . . (2.36)

The Lagrange collocation (LCOL) scheme for (2.35) is given in (2.33) (third identity).
Also, applying the collocation using the new basis {Q j } (with λ > 0) to (2.35), we obtain
from (2.22) that

(
λ2Qin + IN−1

)
v = κB Qinv, so Qinv = 1

κB − λ2
v.

By (2.33)–(2.34), we can compute the approximate eigenvalues of (2.35) using new scheme
by

κB = 1

κQ
+ λ2 = κ̂Q − 1

λ2
. (2.37)

According to [35], about a portion of 2N/π out of N discrete eigenvalues of D(2)
in can

approximate the continuous eigenvalues of (2.35) with an accuracy of at least two or three
digits. In Fig. 2, we plot the eigenvalues with N = 50 and λ = 1.We see that the two schemes
(new scheme and LCOL) κB ≈ κL . This shows the new basis has an approximability and
resolutions similar to the polynomial basis. Figure 3 shows the spectral radius σ(Qin) of
Qin, which has the behavior σ(Qin) ≈ 4/(4λ2 +π2) for N � 1. Indeed, by (2.34), we have

σ(Qin) = max
j

{|κQ
j |} ≈ 1

|κL
1 − λ2| ≈ 4

4λ2 + π2 , (2.38)

where we used κL
1 ≈ −π2/4 in (2.36).
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Fig. 2 Continuous and discrete eigenvalues with N = 50 and λ = 1. Left α = β = −1/2. Right α = β = 0
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3 Rapid and Stable Computation of the New Basis

In this section, we provide a fast, stable and accurate means to compute the new basis {Q j }
in Theorem 2.2. Note that it only suffices to evaluate I±

λ [ f ](xi ) (defined in (2.4)) with
f = l j (defined in (2.7)). The efficient algorithm is built upon the fast convolution scheme
particularly for the exponential kernel (see, e.g., [1]), and recurrence formulas of Jacobi
polynomials.

3.1 Fast Convolution Algorithm

We first compute I±
λ [ f ]with f (x) = P(α,β)

n (x), the Jacobi polynomial of degree n and with
parameters α, β > −1 (cf. [30]). Recall the property:

P(α,β)
n (−x) = (−1)n P(β,α)

n (x), x ∈ (−1, 1). (3.1)

With this, we can compute one integral from the other as follows.

Proposition 3.1 Let I±
λ be the integral operators defined in (2.4). Then we have

I+
λ

[
P(α,β)
n

]
(x) = (−1)n I−

λ

[
P(β,α)
n

]
(−x), (3.2)

for α, β > −1 and n ≥ 0.

Proof The identity (3.2) can be verified directly from (2.4) to (3.1) and change of variables
in integration. ��

In view of this, we just focus on the computation of I−
λ [ f ](x). Following e.g., [1], we

have the important recurrence relation.

Proposition 3.2 Let {xi }Ni=0 ⊆ [−1, 1] (with x0 = −1) be any set of distinct points (e.g.,
JGL points) arranged in ascending order, and let I±

λ [ f ](x) be the integrals defined in (2.4).
Then for any λ �= 0, we have

I−
λ [ f ](xi ) = e−λ�i I−

λ [ f ](xi−1) + 1

2λ

∫ xi

xi−1

e−λ(xi−y) f (y) dy, (3.3)

and I−
λ [ f ](x0) = 0, where �i = xi − xi−1 for 1 ≤ i ≤ N .
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Proof By the definition (2.4) and a direct calculation, we have

I−
λ [ f ](xi ) = 1

2λ

∫ xi

−1
e−λ(xi−y) f (y) dy

= 1

2λ

∫ xi−1

−1
e−λ(xi−1+�i−y) f (y) dy + 1

2λ

∫ xi

xi−1

e−λ(xi−y) f (y) dy

= e−λ�i I−
λ [ f ](xi−1) + 1

2λ

∫ xi

xi−1

e−λ(xi−y) f (y) dy.

This ends the proof. ��
Thanks to the exponential convolution kernel, we are able to compute the integral val-

ues {I−
λ [ f ](xi )} recursively, which only require the evaluation of the integrals at the local

subintervals
{[xi−1, xi ]

}N
i=1. This overcomes the burden of history dependence of integration.

3.2 Useful Formulas

With (3.3) at our disposal, it suffices to compute the local integrals. More specifically, for
the new basis {Q j } in Theorem 2.1, we only need to compute

Sij := I−
λ [l j ](xi ) = e−λ�i I−

λ [l j ](xi−1) + 1

2λ

∫ xi

xi−1

e−λ(xi−y)l j (y) dy, (3.4)

for 1 ≤ i ≤ N , 1 ≤ j ≤ N − 1. Note that to better represent the recurrence relations, we use
the notation Sij , μ

n
j , Z

i
n etc., where the superscript (resp. subscript) is the row (resp. column)

index when we assemble the matrices.
The Lagrange interpolating basis polynomials {l j } are defined in (2.7), which can be

represented in terms of Jacobi polynomials.

Proposition 3.3 Let {x j , ω j } be the JGL points and quadrature weights. Then l j defined in
(2.7) has the representation:

l j (x) =
N−2∑
n=0

μn
j P

(α,β)
n (x), 1 ≤ j ≤ N − 1, (3.5)

where

μn
j : = 1

γ
(α,β)
n

{
P(α,β)
n (−1)l j (−1)ω0 + P(α,β)

n (x j )ω j + P(α,β)
n (1)l j (1)ωN

}
,

l j (−1) = − 1 − x j
2(β + 1)

P(α,β)
N (−1)

P(α,β)
N (x j )

, l j (1) = − 1 + x j
2(α + 1)

P(α,β)
N (1)

P(α,β)
N (x j )

.

(3.6)

To avoid distraction from themain results, we provide the derivation of the above formulas
in Appendix 8.

With the aid of (3.5), the evaluation of (3.4) boils down to computing

Zi
n :=

∫ xi

xi−1

e−λ(xi−y)P(α,β)
n (y) dy, (3.7)

for 1 ≤ i ≤ N and 0 ≤ n ≤ N − 2.
The following recurrence relation is essential for the fast computation of the basis func-

tions.
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Proposition 3.4 For α, β > −1, let {xi }Ni=0 be the JGL points arranged in ascending order.
Then we have that for 1 ≤ i ≤ N ,

λan Z
i
n−1 + (1 + λbn)Z

i
n + λcn Z

i
n+1 = gin, n ≥ 1; Zi

0 = (1 − e−λ�i )/λ, (3.8)

where �i = xi − xi−1, {an, bn, cn} are defined in (B.8), and

gin =an P
(α,β)
n−1 (xi ) + bn P

(α,β)
n (xi ) + cn P

(α,β)
n+1 (xi )

− e−λ�i
{
an P

(α,β)
n−1 (xi−1) + bn P

(α,β)
n (xi−1) + cn P

(α,β)
n+1 (xi−1)

}
.

(3.9)

Proof Inserting the formula (7.7) into (3.7), we obtain (3.8)–(3.9) straightforwardly by using
integration by parts. Note that Zi

0 is computed directly from (3.7). ��
Remark 3.1 Observe from (B.8) that for fixed α, β > −1,

an = O(n−1), bn = O(n−2), cn = O(n−1).

The naive updating Zi
n+1 from Zi

n−1 and Zi
n recursively by using (3.8) with the initial data

Zi
0 and Zi

1, appears unstable, as the coefficient (1 + λbn)/λcn grows like O(n).

Instead, we treat (3.8) as a tridiagonal system equipped with the boundary values Zi
0

and Zi
N−2 (to be pre-computed). Inspect that for large n, the system is strictly diagonally

dominant. More importantly, the coefficients are independent of i , so we can pre-compute
and store e.g., the LU-decomposition of the tridiagonal coefficient matrix, and then update
{gin} for each i. This allows us to evaluate all {Zi

n} in a fast, stable and accurate manner at a
cost comparable to the use of a recurrence relation. ��
3.3 Summary of the Algorithm

We now have all pieces of the puzzle ready, and summarize the algorithm for computing{I−
λ [l j ](xi )

}
of the new basis functions {Q j } in Theorem 2.1, i.e., the matrix Q in (2.21) as

follows.

Algorithm for computing {Sij } (0 ≤ i ≤ N , 1 ≤ j ≤ N − 1) in (3.4)

1. Initialization:

(i) Pre-compute the JGL points and weights {x j , ω j }Nj=0, and Jacobi polynomials at

JGL points
{
P(α,β)
n (x j )

}0≤n≤N−2
0≤ j≤N .

(ii) Store the LU-decomposition of the tridiagonal matrix A with main diagonal {1 +
λbn}N−3

n=1 and lower (resp. upper) off-diagonal {λan}N−3
n=2 (resp. {λcn}N−4

n=1 ).

2. For j = 1, . . . , N − 1,

a) From (3.6), we compute

μ j = (
μ0

j , μ
1
j , . . . , μ

N−2
j

)t
.

b) For i = 1, . . . , N ,

(i) Solve the tridiagonal system by substitution{
AZi = gi with Zi = (

Zi
1, . . . , Z

i
N−3

)t
, and

gi = (
gi1 − λa1Z

i
0, g

i
2, . . . , g

i
N−4, g

i
N−3 − λcN−3Z

i
N−2

)t
,

(3.10)
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where Zi
N−2 in (3.7) can be computed by the Legendre-Gauss quadrature.

(ii) From (3.3), (3.5) and (3.7), we compute

Sij = e−λ�i Si−1
j + 1

2λ
Zi · μ j ; S0j = 0. (3.11)

Endfor of i.

Endfor of j.

Remark 3.2 If |λ| � 1, we find it is necessary to re-normalize the basis as {Q̃ j :=
λ2Q j }N−1

j=1 . Accordingly, we use λ2l j in place of l j in (3.4), reset (3.7) as

Zi
n :=

∫ xi

xi−1

λe−λ(xi−y)P(α,β)
n (y) dy, (3.10)

and modify the above algorithm. A direct calculation from the mean value theorem leads to

|Zi
n | ≤ max

x∈[−1,1]{|P
(α,β)
n (x)|}(1 − e−λ�i

)
. (3.11)

Also observe from (2.16) that the summation in the evaluation of the basis becomes

N−1∑
j=1

Lλ[u](x j )Q j (x) =
N−1∑
j=1

Lλ[u](x j )
λ2

Q̃ j (x), (3.12)

where for u ∈ C2(�), we have

lim|λ|→∞
Lλ[u](x j )

λ2
= −u(x j ).

In view of these, we see that the computation becomes stable, and one should scale λ2, even
for moderate large |λ|. ��

In Fig. 4, we plot the first five basis functions.
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Fig. 4 Plots of {Q j }4j=0 with λ = 1,B±[u] = u(±1) and N = 4. Left α = β = −1/2. Right α = β = 0
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4 Interpolation Error Estimates

Hereafter, we study the approximability of the new basis. To fix the idea, we restrict our
attentions to theBirkhoff interpolation (2.16)withB±[u] = u(±1), and focus on the analysis
of interpolation at Legendre–Gauss–Lobatto (LGL) and Chebyshev–Gauss–Lobatto (CGL)
points.

We first introduce some notation. Given a generic weight function � on �, let L2
� (�) be

the space of all square integrable functions on �, with the inner product and norm denoted
by (·, ·)� and ‖ · ‖� , respectively, as usual. Let Hm

� (�) for m ≥ 1 be the usual weighted
Sobolev space with the norm and semi-norm, respectively, defined by

‖u‖m,� =
( m∑
k=0

‖u(k)‖2�
)1/2

, |u|m,� = ‖u(m)‖� .

In what follows, for any u ∈ C2(�), we denote

f (x) = Lλ[u](x) = u′′(x) − λ2u(x),

eN (x) = (
u − I

B
Nu

)
(x), ẽ f

N (x) = (
f − I

G
N−2 f

)
(x), (4.1)

where IBN is defined in (2.16) with B±[u] = u(±1), and I
G
N−2 is the Lagrange interpolation

operator at the interior JGL points {xi }N−1
i=1 (i.e., the Jacobi–Gauss interpolation operator at

zeros of P(α+1,β+1)
N−1 (x)). It is important to notice the following error equation:

Lλ[eN ](x) = e′′
N (x) − λ2eN (x) = ẽ f

N (x), x ∈ �; eN (±1) = 0. (4.2)

Indeed, by (2.15), (
I
B
Nu

)′′
(x) − λ2

(
I
B
Nu

)
(x) = (

I
G
N−2 f

)
(x), (4.3)

so (4.2) follows from subtracting (4.3) from the first equation in (4.1) immediately. Introduce
the non-uniformly Jacobi-weighted Sobolev space:

Bm
α,β(�) = {

u : u(k) ∈ L2
ω(α+k,β+k) (�), 0 ≤ k ≤ m

}
, m ∈ N.

Recall the Jacobi–Gauss interpolation error estimate [27, Theorem. 3.41]: For α, β > −1,
and any f ∈ Bm

α+1,β+1(�) with 1 ≤ m ≤ N + 1,

‖ f − I
G
N−2 f ‖ω(α+1,β+1) ≤ cN−m‖ f (m)‖ω(α+m+1,β+m+1) , (4.4)

where c is a positive constant independent of N and f. This, together with (4.2), immediately
implies

‖Lλ[eN ]‖ω(α+1,β+1) ≤ cN−m‖ f (m)‖ω(α+m+1,β+m+1) , (4.5)

for m ≥ 1, α, β > −1, and λ �= 0, where f = Lλ[u].
In fact, we can derive the H2-estimates in the following sense.

Theorem 4.1 For −1 < α, β ≤ 0, and for real λ �= 0, if u′′ ∈ L2
ω(α+m+1,β+m+1) (�) and

u ∈ Bm
α,β(�) with m ≥ 1, then we have

‖u − I
B
Nu‖2,ω(α+1,β+1) ≤ cN−m(‖u(m+2)‖ω(α+m+1,β+m+1) + λ2‖u(m)‖ω(α+m+1,β+m+1) ), (4.6)

where c is a positive constant independent of u and N .
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Proof Multiplying (4.2) by eNω(α+1,β+1), and integrating the resulted equation over (−1, 1),
we obtain from integration by parts that

‖e′
N‖2

ω(α+1,β+1) + λ2‖eN‖2
ω(α+1,β+1) + 1

2

∫ 1

−1
e2N (x)W (x)ω(α−1,β−1)(x)dx

= −(ẽ f
N , eN )ω(α+1,β+1) ≤ λ2

2
‖eN‖2

ω(α+1,β+1) + 1

2λ2
‖ẽ f

N‖2
ω(α+1,β+1) ,

(4.7)

where by a direct calculation,

W (x) = −(α+β +2)(α+β +1)x2−2(α−β)(α+β +1)x +α+β +2− (α−β)2. (4.8)

From [27, P. 126], we have W (x) ≥ 0 if −1 < α, β ≤ 0. Then (4.7) implies

‖e′
N‖2

ω(α+1,β+1) + λ2

2
‖eN‖2

ω(α+1,β+1) ≤ 1

2λ2
‖ẽ f

N‖2
ω(α+1,β+1) . (4.9)

Thus, by (4.5),

‖e′′
N‖ω(α+1,β+1) ≤ λ2‖eN‖ω(α+1,β+1) + cN−m‖ f (m)‖ω(α+m+1,β+m+1) . (4.10)

Noting that

‖ f (m)‖ω(α+m+1,β+m+1) ≤ c(‖u(m+2)‖ω(α+m+1,β+m+1) + λ2‖u(m)‖ω(α+m+1,β+m+1) ), (4.11)

we obtain (4.6) from the above three estimates. ��
Remark 4.1 For the Birkhoff interpolation at LGL points (i.e., α = β = 0), it is clear that
W (x) = 2(1 − x2) in (4.8), so the interpolation error in L2-norm ‖eN‖ can be bounded by
the same upper bound in (4.6).

In the Chebyshev case (i.e., α = β = −1/2), we have W (x) = 1, so the estimate (4.6) is
also valid for ‖eN‖ω(−3/2,−3/2) . ��
Remark 4.2 Theorem 4.1 indicates that the order of convergence in weighted H2-norm is as
optimal as usual polynomial interpolation. However, it appears nontrivial to rigorously show
the optimal order of convergence in H1-norm and L2-norm. In fact, we can apply integration
by parts to −(ẽ f

N , eN )ω(α+1,β+1) in (4.7), and shift the derivative to eN .

• For −1 < α, β < 0, we have

− (ẽ f
N , eN )ω(α+1,β+1) = (∂−1

x ẽ f
N , e′

N )ω(α+1,β+1) + (∂−1
x ẽ f

N , qeN )ω(α,β) , (4.12)

where ∂−1
x ẽ f

N (x) = ∫ x
−1 ẽ

f
N (y)dy, and q = (β −α)−(α+β +2)x .Recall the inequality

(cf. [27, (B.40)]):
‖eN‖ω(α−1,β−1) ≤ c‖e′

N‖ω(α+1,β+1) . (4.13)

Thus, (4.9) can be improved into

‖e′
N‖2

ω(α+1,β+1) + λ2‖eN‖2
ω(α+1,β+1) ≤ c‖∂−1

x ẽ f
N‖2

ω(α+1,β+1) . (4.14)

• For α = β = 0, we apply the same technique and obtain from (4.7) that for some
0 < s < 1,

‖e′
N‖2

ω(1,1) + λ2‖eN‖2
ω(1,1) + ‖eN‖2 ≤ |(∂−1

x ẽ f
N , e′

N )ω(1,1) | + 2|(∂−1
x ẽ f

N , xeN )|
≤ ‖∂−1

x ẽ f
N‖ω(1,1)‖e′

N‖ω(1,1) + 2‖∂−1
x ẽ f

N‖ω(s,s)‖xeN‖ω(−s,−s) .
(4.15)
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Table 1 Order of convergence in ‖ẽ fN ‖ω and ‖∂−1
x ẽ fN ‖ω for the Chebyshev and Legendre cases

N Chebyshev (ω = ω(1/2,1/2)) Legendre (ω = ω(0.9,0.9))

‖ẽ fN ‖ω Order ‖∂−1
x ẽ fN ‖ω Order ‖ẽ fN ‖ω Order ‖∂−1

x ẽ fN ‖ω Order

16 3.54e−04 – 2.43e−05 – 3.35e−04 – 2.25e−05 –

24 1.25e−04 2.57 5.82e−06 3.53 1.20e−04 2.53 5.47e−06 3.49

32 6.02e−05 2.53 2.12e−06 3.51 5.85e−05 2.50 2.02e−06 3.47

40 3.43e−05 2.52 9.69e−07 3.51 3.35e−05 2.50 9.31e−07 3.47

48 2.17e−05 2.51 5.12e−07 3.50 2.13e−05 2.49 4.95e−07 3.47

56 1.47e−05 2.51 2.98e−07 3.50 1.45e−05 2.49 2.90e−07 3.47

64 1.05e−05 2.51 1.87e−07 3.50 1.04e−05 2.49 1.82e−07 3.48

72 7.85e−06 2.50 1.24e−07 3.50 7.75e−06 2.49 1.21e−07 3.48

We proceed by recalling the inequality (cf. [27, (B.42)]): for a, b > −1 and v ∈
H1

ω(a+2,b+2) (�) with v(x0) = 0 for some x0 ∈ �, we have

‖v‖ω(a,b) ≤ c‖v′‖ω(a+2,b+2) . (4.16)

This implies

‖xeN‖ω(−s,−s) ≤ c‖(xeN )′‖ω(2−s,2−s) ≤ c
(‖e′

N‖ω(2−s,2−s) + ‖eN‖ω(2−s,2−s)

)
≤ c

(‖e′
N‖ω(1,1) + ‖eN‖). (4.17)

Then using the Cauchy–Schwarz inequality, we obtain from (4.15) and (4.17) that

‖e′
N‖2

ω(1,1) + λ2‖eN‖2
ω(1,1) + ‖eN‖2 ≤ c‖∂−1

x ẽ f
N‖2

ω(s,s) , 0 < s < 1. (4.18)

We expect to have ‖∂−1
x ẽ f

N‖ω ∼ N−1‖ẽ f
N‖ω with ω = ω(α+1,β+1), ω(s,s), respectively, for

two cases. However, it seems open to prove this rigorously, and the major difficulty lies in
the estimates of polynomial interpolation errors in negative Sobolev norms. Here, we just
provide a numerical example to illustrate the gain in order. For this purpose, we choose f
with limited regularity as follows

f (x) =
⎧⎨
⎩
x2

2
+ x − 1, x ≤ 0,

x − 1, x > 0.
(4.19)

We tabulate in Table 1 the (discrete) weighted L2-errors in different sense. It is evident that
with the above treatment, the convergence rate is one order higher as expected. ��

5 New Collocation Methods

In this section, we construct new collocation schemes based upon the new basis {Q j } for
various PDEs including steady-state and time-dependent problems.
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5.1 Boundary Value Problems

Consider
u′′(x) + r(x)u′(x) + s(x)u(x) = f (x), x ∈ �, (5.1)

where the given functions r, s, f ∈ C(�). To fix the idea, we consider (5.1) with Dirichlet
boundary conditions: u(±1) = u±.

Let {xi }Ni=0 be the JGL points as before. Then the collocation scheme for (5.1) is to find
uN ∈ PN such that

u′′
N (xi ) + r(xi )u

′
N (xi ) + s(xi )uN (xi ) = f (xi ), 1 ≤ i ≤ N − 1; uN (±1) = u±. (5.2)

(i) Usual collocation scheme using Lagrange polynomial basis. Let {h j }Nj=0 be the
Lagrange basis polynomials defined in (2.19). We expand the numerical solution of
(5.1) as

uN (x) = u−h0(x) +
N−1∑
j=1

uN (x j )h j (x) + u+hN (x),

and substitute it into (5.2), leading to

(
D(2)
in + �r D

(1)
in + �s

)
u = f − uB , (5.3)

where

�r = diag(r(x1), r(x2), . . . , r(xN−1)), �s = diag(s(x1), s(x2), . . . , s(xN−1)),

u = (uN (x1), uN (x2), . . . , uN (xN−1))
t , f = ( f (x1), f (x2), . . . , f (xN−1))

t ,

uB is the vector of
{
u−(d(2)

i0 + r(xi )d
(1)
i0 ) + u+(d(2)

i N + r(xi )d
(1)
i N )

}N−1
i=1 .

(ii) New collocation scheme using {Q j } as basis functions. Write

uN (x) = u−Q0(x) +
N−1∑
j=1

v j Q j (x) + u+QN (x), (5.4)

where v j = u′′
N (x j ) − λ2uN (x j ). Then the matrix form of (5.2) reads

(
IN−1 + �r Q

(1)
in + (�s + λ2 IN−1)Qin

)
v = f − u−v− − u+v+, (5.5)

here v− and v+ are vectors with entries
{
r(xi )q

(1)
i0 + (s(xi ) + λ2)qi0

}N−1
i=1 and{

r(xi )q
(1)
i N + (s(xi ) + λ2)qiN

}N−1
i=1 , respectively.

Remark 5.1 It is clear that if r = 0 and s = −λ2, the numerical solution in (5.4) can be
directly obtained without solving a linear system. ��

In what follows, we take r(x) = −(1+ sin x), s(x) = −ex and test two exact solutions. One
is sufficiently smooth:

u(x) = e(x2−1)/2, x ∈ �, (5.6)

and the other has a limited regularity:
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Table 2 Errors, number of iterations and condition numbers for (5.1) with α = β = 0, λ = 1 and the exact
solution (5.6)

N LCOL (5.3) BCOL [32] New scheme (5.5)

Conds Iters Errors Conds Iters Errors Conds Iters Errors

4 6.18e+00 3 1.28e−03 1.41 3 1.28e−03 1.40 3 1.08e−03

6 1.92e+01 6 2.20e−05 1.77 5 2.20e−05 1.63 5 1.88e−05

8 4.87e+01 9 3.85e−07 1.97 7 3.85e−07 1.72 7 3.41e−07

10 1.07e+02 12 6.06e−09 2.09 9 6.06e−09 1.79 8 5.49e−09

12 2.10e+02 15 8.67e−11 2.17 9 8.67e−11 1.84 9 7.98e−11

14 3.74e+02 20 1.12e−12 2.23 9 1.13e−12 1.88 9 1.05e−12

16 6.20e+02 25 3.80e−14 2.27 9 1.34e−14 1.91 9 1.24e−14

Table 3 Errors, number of iterations and condition numbers for (5.1) with α = β = 0, λ = 1 and the exact
solution (5.7)

N LCOL (5.3) BCOL [32] New scheme (5.5)

Conds Iters Errors Conds Iters Errors Conds Iters Errors

4 6.18e+00 3 7.26e−03 1.41 3 7.26e−03 1.40 3 5.92e−03

8 4.87e+01 9 1.40e−04 1.97 7 1.40e−04 1.72 7 1.40e−04

16 6.20e+02 25 1.23e−05 2.27 9 1.23e−05 1.91 9 1.23e−05

32 9.13e+03 81 9.27e−07 2.42 9 9.27e−07 2.03 9 9.27e−07

64 1.41e+05 308 6.39e−08 2.50 9 6.39e−08 2.09 9 6.39e−08

128 2.21e+06 1319 5.13e−09 2.54 9 4.20e−09 2.12 9 4.20e−09

256 3.52e+07 7472 9.24e−09 2.56 9 2.69e−10 2.13 9 2.69e−10

512 5.60e+08 9982 3.88e+00 2.57 9 1.71e−11 2.14 9 1.71e−11

1024 8.95e+09 9814 5.37e+00 2.57 9 1.07e−12 2.14 9 1.07e−12

2048 1.43e+11 9998 5.87e+00 2.57 9 6.75e−14 2.15 9 6.17e−14

u(x) =
⎧⎨
⎩e

x2
2 +1 + e

x2
2 , −1 ≤ x < 0,

e
x2
2 +1 + x2

2 + 1, 0 ≤ x ≤ 1,
x ∈ �, (5.7)

which is in C3(�).

In Tables 2 and 3, we compare the condition numbers, number of iterations (using
BiCGSTAB in Matlab with options tol=10−14 and maxit=10,000) and errors (L∞-norm)
of the three schemes: LCOL (5.3), the Birkhoff collocation (BCOL) in [32], and the new
scheme (5.5) for (5.1). As expected, the usual collocation scheme using Lagrange interpo-
lating polynomial basis suffers from severe round-off errors, and the iterative method fails
to converge for large N , due to the ill-conditioning of the linear system. In contrast, we see
that the other two collocation schemes do not have such a deficiency. They are consistently
stable, and enjoy the expected order of convergence within a few iterations even for a large
number of collocation points. Compared with BCOL in [32], the new approach has advan-
tage for constant coefficient problems (cf. Remark 5.1). The results also show that the new
non-polynomial approach as accurate as the polynomial-based approach in [32].
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As a second example, we consider the collocation scheme for the Bessel-type equation:

− 1

r

d

dr

(
r
dv

dr

)
+ l2

r2
v − k2v = 0, r ∈ (a, b), a > 0;

v(a) = g1, v′(b) − ikv(b) = g2,
(5.8)

for integer l, where k � 1 is the wavenumber, and g1, g2 are given data. It is known
that the two-dimensional time-harmonic acoustic wave equation in an annular domain: r ∈
(a, b), θ ∈ [0, 2π) reduces to (5.8) if one uses Fourier expansion in θ -direction (see, e.g.,
[29,31]).

To facilitate the use of a collocation scheme, we make a change of variable to remove the
first-order derivative (cf. [31]), that is,

r = a + x + 1

2
(b − a), u(x) = √

rv(r), r ∈ (a, b), x ∈ (−1, 1). (5.9)

Then, we can convert (5.8) into

u′′(x) + k̂2u(x) − s(x)u(x) = 0, x ∈ (−1, 1),

u(−1) = g−, u′(1) − η u(1) = g+,
(5.10)

where

k̂ = b − a

2
k, s(x) =

(b − a

2

)2 4l2 − 1

4r2
, g− = √

a g1, g+ = b − a

2

√
b g2,

η = ik̂ + b − a

4b
.

Here, we use the new basis {Q j } with λ = ik̂, and look for the numerical solution

uN (x) = g−Q0(x) +
N−1∑
j=1

v j Q j (x) + g+QN (x) ∈ QN , (5.11)

such that
u′′
N (xi ) + k̂2uN (xi ) − s(xi )uN (xi ) = 0, 1 ≤ i ≤ N − 1,

uN (−1) = g−, u′
N (1) − η uN (1) = g+.

(5.12)

Thanks to (2.22), the linear system of (5.12) reads(
IN−1 − �s Qin

)
v = f , (5.13)

where
�s = diag(s(x1), s(x2), . . . , s(xN−1)), v = (v1, v2, . . . , vN−1)

t ,

and f is a vector of
{
s(xi )(qi0g− + qiN g+)

}N−1
i=1 .

We test the exact solution v(r) = J1(kr)/k of (5.8) (with l = 1, a = 1 and b = 2), where
J1(·) is the first kind Bessel function of order 1. It is highly oscillatory when k � 1. In Fig. 5,
we depict the maximum pointwise errors against N for different wavenumber k. We see that
the errors decay exponentially when N > k(b−a)/2, and the collocation solver is very stable
for high wavenumber k. Indeed, the conditioning of the linear system (5.13) is independent
of N and k (see Table 4). It is noteworthy that the well-designed spectral-Galerkin solver for
(5.8) still has a condition number of O(k2).

Remark 5.2 The aforementioned approach works for a > 0, while for a = 0, we have to
impose a suitable “pole” condition at the origin. Then we can follow the treatment in [19] to
construct the collocation scheme. ��
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Fig. 5 Maximum pointwise errors vs N for (5.8). Left α = β = −1/2. Right α = β = 0

Table 4 Condition number of IN−1 − �s Qin with α = β = 0 in (5.13)

k N = 128 N = 256 N = 512 N = 1024 k N = 128 N = 256 N = 512 N = 1024

50 1.006140 1.006138 1.006137 1.006136 500 1.000165 1.000640 1.000643 1.000643

100 1.003131 1.003130 1.003129 1.003129 800 1.000069 1.000134 1.000403 1.000403

200 1.001588 1.001587 1.001587 1.001587 1000 1.000074 1.000068 1.000323 1.000323

5.2 Time-Dependent Problems

We now consider the application of the new collocation scheme in spatial discretization
of time-dependent nonlinear problems. To avoid solving nonlinear systems, a semi-implicit
time-marching scheme is preferred in practice. This usually leads to solving Lλ[u] = f,
where λ involves the time-stepping size. Thanks to (2.22), we can explicitly invert the oper-
ator by using the new basis. Accordingly, a semi-implicit scheme appears like an “explicit”
scheme.

To fix the idea, we consider the Burger’s equation⎧⎪⎨
⎪⎩

∂tv + v∂yv = ν∂2yv, (y, t) ∈ (a, b) × (0, T ],
v(a, t) = v−(t), v(b, t) = v+(t), t ∈ [0, T ],
v(y, 0) = v0(y), y ∈ [a, b],

(5.14)

for constant ν > 0, and given data v±, v0. We transform the interval of interest to the
reference interval (−1, 1) via

y = a + x + 1

2
(b − a), u(x, t) = v(y, t), u0(x) = v0(y), μ = 4ν

(b − a)2
, (5.15)

and convert (5.14) into⎧⎪⎨
⎪⎩

∂t u + 2
b−a u∂xu = μ∂2x u, (x, t) ∈ (−1, 1) × (0, T ],

u(−1, t) = v−(t), u(1, t) = v+(t), t ∈ [0, T ],
u(x, 0) = u0(x), x ∈ [−1, 1].

(5.16)

Let τ be the time-stepping size and let tn = nτ for n = 0, 1, 2, . . .. We employ the
Crank–Nicolson leap-frog scheme with spatial discretization by the new basis {Q j } (with
λ = 1/

√
τμ) for (5.16), that is, to find the approximation of u(x, tn) as
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unN (x) = v−(tn)Q0(x) +
N−1∑
j=1

vnj Q j (x) + v+(tn)QN (x) ∈ QN , n ≥ 0,

such that

un+1
N (xi ) − un−1

N (xi )

2τ
+ 2

b − a
unN (xi )∂xu

n
N (xi ) = μ∂2x

(un+1
N + un−1

N

2

)
(xi ), (5.17)

for 1 ≤ i ≤ N − 1 and n ≥ 1. It is seen that unN meets the boundary conditions exactly. By
Theorems 2.3 and (5.17), we obtain the following “explicit” marching scheme:

vn+1 = −(
2λ2Qin + IN−1

)
vn−1 + f n, n ≥ 1, (5.18)

where vn = (vn1 , v
n
2 , . . . , v

n
N−1)

t and f n = ( f n1 , f n2 , . . . , f nN−1)
t with

f ni = 4

μ(b − a)

(
v−(tn)qi0 +

N−1∑
j=1

qi jv
n
j + v+(tn)qiN

)

×
(
v−(tn)q

(1)
i0 +

N−1∑
j=1

q(1)
i j vnj + v+(tn)q

(1)
i N

)
.

Remark 5.3 We can use a suitable second-order one-step scheme to generate v1 from v0.

One finds from (2.38) that the spectral radius

σ
(
2λ2Qin + IN−1

) ≈
∣∣∣4λ2 − π2

4λ2 + π2

∣∣∣ < 1, N � 1. (5.19)

Note that λ2 = (τμ)−1, so the scheme is unconditionally stable. ��
In the following test, we consider (5.14) with a = −5, b = 5, T = 12, and the exact

solution:

v(y, t) = �
{
1 − tanh

( �

2ν
(y − �y + 3)

)}
, ν = 0.1, � = 0.5.

We tabulate in Table 5 the CPU time, the maximum pointwise errors at final time T, and
the order of convergence for the new scheme (including the overheads for pre-computing
the basis functions), BCOL in [32], and LCOL schemes. Observe from Table 5 that the new

Table 5 Comparison of three collocation schemes for first example of (5.14) with α = β = 0 and N = 200

τ LCOL BCOL [32] New scheme

CPU (s) Errors Orders CPU (s) Errors Orders CPU (s) Errors Orders

0.01000 34.500 1.38e+00 – 30.585 1.41e+00 – 5.039 1.41e+00 –

0.00500 49.010 2.05e−01 2.75 86.321 2.40e−02 5.88 4.971 2.42e−02 5.86

0.00100 134.875 9.06e−05 4.80 475.908 3.26e−07 6.96 6.084 3.26e−07 6.97

0.00050 170.766 9.06e−05 −0.00 1205.271 8.15e−08 2.00 7.318 8.15e−08 2.00

0.00010 476.973 9.06e−05 −0.00 9064.323 3.26e−09 2.00 15.849 3.19e−09 2.01

0.00005 1121.298 9.06e−05 −0.00 33228.976 8.16e−10 2.00 49.842 7.79e−10 2.04
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Fig. 6 Profiles of numerical solutions of (5.14) and (5.20) with N = 80 and τ = 0.01. Left ν = 0.02. Right
ν = 0.01

scheme is much faster for small time-stepping size or long time integration, since there is no
need to solve a linear system for each time stepping.

We further test the new method by considering (5.14) with

v0(x) = − sin(πx), v±(t) = 0, a = −1, b = 1. (5.20)

We plot in Fig. 6 the profiles of the numerical solutions at time t = 0, 0.4, 0.8, 1 for two
values of ν = 0.02 and ν = 0.01, respectively. We clearly observe the steepening of the
profiles at the center of the region, before the shock is developed.

5.3 Two-Dimensional Poisson-type Equations

We next extend the new collocation scheme to multiple dimensions. Consider the two-
dimensional Poisson-type equation

�u − 2λ2u = f, (x, y) ∈ � = (−1, 1) × (−1, 1); u|∂� = 0. (5.21)

Using the new basis {Q j } with parameter λ > 0, we look for the numerical solution:

uN (x, y) =
N−1∑
m,n=1

ũmnQm(x)Qn(y).

Note that by (2.8),

�uN − 2λ2uN =
N−1∑
m,n=1

ũmnlm(x)Qn(y) +
N−1∑
m,n=1

ũmnQm(x)ln(y).

From this property and the collocation scheme for (5.21):

�uN (xi , y j ) − 2λ2uN (xi , y j ) = f (xi , y j ), 1 ≤ i, j ≤ N − 1, (5.22)

we obtain the linear system:
U Qt

in + QinU = F, (5.23)

where U = (
ũmn

)
m,n=1,...,N−1, and F = (

f (xi , y j )
)
i, j=1,...,N−1.

Using the notion of the methods of eigen-decomposition (see, e.g., [27, Sec. 8.1.1]), we
take the following steps to solve the problem:
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Fig. 7 Comparison of maximum pointwise errors for (5.21). Left λ = 1. Right λ = 100
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Fig. 8 Comparison of maximum pointwise errors for (5.25). Left λ = 1. Right λ = 10

1. Pre-processing: compute the eigenvalue and eigenvectors (�, E) of Qin;
2. Compute F̃ = E−1F(E−1)t ;
3. Compute Ũ from following equation

Ũi j = F̃i j
�i i + � j j

, 1 ≤ i, j ≤ N − 1; (5.24)

4. Obtain the solution U = EŨ Et . ��
We test (5.21)with the exact solution u = sin(2πx) sin(2πy). In Fig. 7, we plot themaximum
pointwise errors for various N . This show that the new scheme has spectral accuracy if the
solution is smooth.

Lastly, we consider the Poisson equation

�u = f, (x, y) ∈ � = (−1, 1)2; u|∂� = 0. (5.25)

In this case, we essentially replace (5.24) by

Ũi j = F̃i j
�i i + � j j + 2λ2�i i� j j

, 1 ≤ i, j ≤ N − 1.

In Fig. 8, we depict the maximum pointwise errors for (5.21) with the same exact solution
u = sin(2πx) sin(2πy). Once again, we observe the spectral accuracy as the previous case.
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6 Formulas for C1 and C2 in Proposition 2.1

Corresponding to the typical boundary conditions in (2.3), we have the following formulas
for the constant C1 and C2 in Proposition 2.1:

• if B±[u] = u(±1) = g±, then

C1 = 1

2 sinh(2λ)

{
g+ + I−

λ [ f ](1)} − e−2λ

2 sinh(2λ)

{
g− + I+

λ [ f ](−1)
}
,

C2 = − 1

2 sinh(2λ)

{
g+ + I−

λ [ f ](1)} + e2λ

2 sinh(2λ)

{
g− + I+

λ [ f ](−1)
}};

(6.1)

• if B±[u] = u′(±1) = g±, then

C1 = λ−1

2 sinh(2λ)

{
g+ − λI−

λ [ f ](1)} − λ−1e−2λ

2 sinh(2λ)

{
g− + λI+

λ [ f ](−1)
}
,

C2 = λ−1

2 sinh(2λ)

{
g+ − λI−

λ [ f ](1)} − λ−1e2λ

2 sinh(2λ)

{
g− + λI+

λ [ f ](−1)
};

(6.2)

• if B−[u] = u(−1) = g− and B+[u] = u′(1) + η u(1) = g+, then

C1 = g+ + (η − λ)I−
λ [ f ](1)

2
(
λ cosh(2λ) + η sinh(2λ)

) − (η − λ)e−2λ
{
g− + I+

λ [ f ](−1)
}

2
(
λ cosh(2λ) + η sinh(2λ)

) ,

C2 = − g+ + (η − λ)I−
λ [ f ](1)

2
(
λ cosh(2λ) + η sinh(2λ)

) + (η + λ)e2λ
{
g− + I+

λ [ f ](−1)
}

2
(
λ cosh(2λ) + η sinh(2λ)

) .

(6.3)

7 Jacobi Polynomials and Jacobi–Gauss–Lobatto Quadrature

Let P(α,β)
n (x) (x ∈ [−1, 1] and α, β > −1) be the Jacobi polynomial of degree n, as

normalized in [30]. We also refer to [30] for the following basic properties.
The Jacobi polynomials are eigenfunctions of the Sturm-Liouville equation

(x2 − 1)∂2x P
(α,β)
n (x) + {

α − β + (α + β + 2)x
}
∂x P

(α,β)
n (x) = λ(α,β)

n P(α,β)
n (x), (7.1)

where the corresponding eigenvalues are

λ(α,β)
n = n(n + α + β + 1). (7.2)

The Jacobi polynomials are orthogonal with respect to the Jacobi weight function:
ω(α,β)(x) = (1 − x)α(1 + x)β, namely,∫ 1

−1
P(α,β)
n (x)P(α,β)

n′ (x)ω(α,β)(x) dx = γ (α,β)
n δnn′ , (7.3)

where δnn′ is the Dirac Delta symbol, and the normalization constant is given by

γ (α,β)
n = 2α+β+1�(n + α + 1)�(n + β + 1)

(2n + α + β + 1)n!�(n + α + β + 1)
. (7.4)

We have

P(α,β)
n (x) = (−1)n P(β,α)

n (−x); P(α,β)
n (1) = �(n + α + 1)

n!�(α + 1)
. (7.5)

123



J Sci Comput

Moreover, there holds the important derivative formula:

∂x P
(α,β)
n (x) = 1

2
(n + α + β + 1)P(α+1,β+1)

n−1 (x), n ≥ 1. (7.6)

We also use the following recurrent relation:

P(α,β)
n (x) = an∂x P

(α,β)
n−1 (x) + bn∂x P

(α,β)
n (x) + cn∂x P

(α,β)
n+1 (x), (7.7)

where a1 := a(α,β)
1 = 0, and

an := a(α,β)
n = − 2(n + α)(n + β)

(n + α + β)(2n + α + β)(2n + α + β + 1)
, n > 1, (7.8a)

bn := b(α,β)
n = 2(α − β)

(2n + α + β)(2n + α + β + 2)
, n ≥ 1, (7.8b)

cn := c(α,β)
n = 2(n + α + β + 1)

(2n + α + β + 1)(2n + α + β + 2)
, n ≥ 1. (7.8c)

The Jacobi–Gauss–Lobatto (JGL) points
{
x j = ξ

(α,β)
N , j

}N
j=0 (with x0 = −1, xN = 1) are

zeros of (1 − x2)∂x P
(α,β)
N (x). Let

{
ω j = ω

(α,β)
N , j

}N
j=0 be the corresponding JGL quadrature

weights (cf. [27, Theorem. 3.27]). Then we have

∫ 1

−1
φ(x)ψ(x)ω(α,β)(x) dx =

N∑
j=0

φ(x j )ψ(x j )ω j , ∀φ · ψ ∈ P2N−1. (7.9)

Let
{
h j := h(α,β)

N , j

}
be the Lagrange interpolating basis polynomials associated with {x j }Nj=0,

such that h j ∈ PN and h j (xi ) = δi j . We have the representation

h j (x) =
N∑

n=0

ω j

γ̃n
P(α,β)
n (x j )P

(α,β)
n (x), (7.10)

where

γ̃n = γ (α,β)
n , 0 ≤ n ≤ N − 1; γ̃N =

(
2 + α + β + 1

N

)
γ

(α,β)
N .

Let IN be the corresponding Lagrange interpolation operator, namely, IN : C(�̄) → PN

such that for any u ∈ C(�̄),

INu(x j ) = u(x j ), 0 ≤ j ≤ N . (7.11)

8 Proof of Proposition 3.3

By the orthogonality (7.3) and (7.9),

μn
j = 1

γ
(α,β)
n

∫ 1

−1
l j (x)P

(α,β)
n (x) ω(α,β)(x) dx

= 1

γ
(α,β)
n

{
l j (−1)P(α,β)

n (−1)ω0 + P(α,β)
n (x j )ω j + l j (1)P

(α,β)
n (1)ωN

}
,

(8.1)
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where we used the property: l j (xi ) = δi j for 1 ≤ i, j ≤ N − 1 (cf. (2.7)). Thus, it remains
to derive the explicit formulas for l j (±1). As the interior JGL points {x j }N−1

j=1 are zeros of

∂x P
(α,β)
N (x), we have

l j (±1) = ∂x P
(α,β)
N (x)

(x − x j ) ∂2x P
(α,β)
N (x j )

∣∣∣∣
x=±1

. (8.2)

By (7.1),

2(β + 1)∂x P
(α,β)
N (−1) = −λ

(α,β)
N P(α,β)

N (−1), 2(α + 1)∂x P
(α,β)
N (1) = λ

(α,β)
N P(α,β)

N (1),

− (1 − x2j )∂
2
x P

(α,β)
N (x j ) = λ

(α,β)
N P(α,β)

N (x j ), 1 ≤ j ≤ N − 1.
(8.3)

A direct calculation from (8.2) and (8.3) leads to

l j (−1) = − 1 − x j
2(β + 1)

P(α,β)
N (−1)

P(α,β)
N (x j )

, l j (1) = − 1 + x j
2(α + 1)

P(α,β)
N (1)

P(α,β)
N (x j )

. (8.4)

Thus, we obtain the desired formulas of l j (±1) in (3.6).
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