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Abstract In this paper,we propose a newgeneralizedHermite spectralmethod.We introduce
an orthogonal family of new generalized Hermite functions, with the weight function (1 +
2
π
arctan x)α(1− 2

π
arctan x)γ , α and γ being arbitrary real numbers. The basic results on the

corresponding orthogonal approximation and interpolation are established. As examples of
applications, we provide the spectral schemes for a linear problem and the Fisher equation,
which possess the spectral accuracy in space and match the different algebraic decay at
infinities reasonably. Numerical results demonstrate their high efficiency and coincide well
with the analysis.
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1 Introduction

In many practical cases occurring in quantum mechanics, biology, financial mathematics
and other fields, we have to consider numerical simulations of various differential equa-
tions defined on unbounded domains. For problems defined on the whole line and certain
related unbounded domains, it is natural to use the Hermite orthogonal approximation and
the Hermite–Gauss interpolation. Guo [7], and Guo and Xu [8] developed the spectral and
pseudospectral methods for nonlinear partial differential equations, by using the Hermite
polynomials which are mutually orthogonal with the weight function e−x2 . Weideman [19]
presented some results on their implementations. The above approaches are available even if
the solutions behave like eθx2 , θ < 1

2 , for large |x |. Whereas, the small global e−x2 -weighted
errors do not imply the small point-wise errors automatically.Meanwhile, Funaro andKavian
[4] considered the spectral method for linear parabolic equations by using an orthogonal sys-

temwith the weight function e
1
4 x

2
. Fok et al. [3] proposed the orthogonal approximation with

the weight function eθx2 , θ > 0. They also used it coupled with finite difference approxima-
tion, to the simplified Fokker–Planck equation. This approach is only suitable for problems

with solutions decaying faster than e− 1
2 θx2 as |x | increases. On the other hand, Guo et al.

[9] provided the spectral and pseudospectral methods using the Hermite functions which
are mutually orthogonal with the weight function 1. They are appropriate for problems with

solutions behaving like (1 + x2)− 1
2 θ , θ > 1, for large |x |, and were applied to numerical

simulation of the Dirac equation. We also refer to the work of Boyd [1,2], Ma et al. [15], Ma
and Zhao [16], and Xiang and Wang [20], and the review papers of Guo [14], and Shen and
Wang [17]. Recently, Zhang andGuo [22] provided the spectral method using the generalized
Hermite functions which are mutually orthogonal with the weight function (1 + x2)−γ , γ

being arbitrary real number. If the solutions of underlying problems behave like (1+ x2)
1
2α ,

α < γ − 1

2
, for large |x |, then the obtained numerical solutions fit such behaviors reasonably.

The solutions of many practical problems, such as the heteroclinic solutions in biology
and the kink solitons in quantummechanics, behave differently at infinities. For instance, the
solutions might decay at certain algebraic rates as x → −∞, but decay at other algebraic
rates as x → ∞. In these cases, the method given in [22] is no longer the most appropriate.
Thus, we need certain new orthogonal approximation with the weight function behaving
differently at infinities. As we know, Guo et al. [10,11] developed the generalized Jacobi
approximation with the weight function (1− x)α(1+ x)β , α and β being any real numbers,
which leads to the new Jacobi spectral and pseudospectral methods for differential equations
defined on the finite interval, fitting the different behaviors of approximated functions at
the endpoints x = ±1. Sun and Guo [18] considered the generalized Jacobi approximation
in multiple dimensions with its applications. Meanwhile, Guo and Yi [12] and Yi and Guo
[21] proposed the generalized Jacobi irrational spectral methods for differential equations
defined on the whole line and the half line, simulating the different behaviors at infinities.
Furthermore, Guo and Zhang [13] studied the generalized Laguerre approximation with
the weight function xα(1+ x)γ , α and γ being any real numbers, which induce the efficient
spectral and pseudospectral methods for various problems defined on the half line, simulating
the properties of approximated functions at x = 0,∞. However, so far, there has not been
any existing results on the Hermite approximation matching different asymptotic behaviors
at infinities.

In this paper, we propose a new Hermite spectral method on the whole line. For this
purpose, we introduce a family of new generalized Hermite functions, which are mutually
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orthogonal with the weight function (1+ 2
π
arctan x)−2α(1− 2

π
arctan x)−2γ , α and γ being

any real numbers. By adjusting the parameters α and γ suitably, they simulate different
asymptotic behaviors of approximated functions at infinities properly. We establish the basic
results on the corresponding generalized Hermite orthogonal approximation, which play an
important role in the related spectral method for various problems with different kinds of
asymptotic behaviors at infinities. Then, we study the related generalized Hermite–Gauss
interpolation, serving as the mathematical foundation of the new Hermite pseudospectral
method. As examples of applications, we provide the spectral schemes for a linear problem
and the Fisher equation in biology, and prove their spectral accuracy in space. The numerical
results indicate the high efficiency of the suggested algorithms, and coincide well with the
analysis.

This paper is organized as follows. The next section is for preliminaries. In Sect. 3,we study
the new generalized Hermite orthogonal approximation and the new generalized Hermite–
Gauss interpolation. In Sect. 4, we provide the spectral schemes for two model problems,
and present some numerical results. The final section is for concluding remarks.

2 Preliminaries

In this section, we recall some results on the Hermite approximation.
Let � = { x | − ∞ < x < ∞} and χ(x) be a certain weight function. For integer

r ≥ 0, we define the weighted Hilbert space Hr
χ (�) in the usual way, with the inner product

(·, ·)r,χ,�, the semi-norm | · |r,χ,� and the norm || · ||r,χ,�. In particular, the inner product
and the norm of the space L2

χ (�) are denoted by (·, ·)χ,� and ‖ · ‖χ,�, respectively. We omit

the subscript χ in notations whenever χ(x) ≡ 1. For simplicity, we denote
dkv

dxk
by ∂kx v, etc.

Let Hl(x) be the standard Hermite polynomial of degree l. For any β > 0, the scaled
Hermite functions are defined by

Hβ
l (x) = 1√

2l l!Hl(βx)e
− 1

2 β2x2 , l ≥ 0.

They are the eigenfunctions of the following singular Sturm-Liouville problem,

e
1
2 β2x2∂x (e

−β2x2∂x (e
1
2 β2x2v(x))) + λ

β
l v(x) = 0, λ

β
l = 2β2l, l ≥ 0. (2.1)

Let δl,m be the Kronecker symbol. The set of all Hβ
l (x) is a complete L2(�)−orthogonal

system, namely, ∫
�

Hβ
l (x)Hβ

m (x)dx =
√

π

β
δl,m . (2.2)

For any v ∈ L2(�), we have

v(x) =
∞∑
l=0

v
β
l H

β
l (x), (2.3)

with

v
β
l = β√

π

∫
�

v(x)Hβ
l (x)dx .

For any positive integer N , we set

Qβ
N (�) = span{ Hβ

0 (x), Hβ
1 (x), · · · , Hβ

N (x) }.
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The L2(�)-orthogonal projection PN ,β,� : L2(�) → Qβ
N (�) is defined by

(PN ,β,�v − v, φ) = 0, ∀φ ∈ Qβ
N (�). (2.4)

For any integer r ≥ 0, we define the space

Hr
A,β(�) = { v | ‖v‖Hr

A,β (�) < ∞},
equipped with the norm

‖v‖Hr
A,β (�) =

(
r∑

k=0

‖(β4x2 + β2)
r−k
2 ∂kx v‖2�

) 1
2

.

Throughout this paper,we denote by c a generic positive constant independent of any function,
N and β. By virtue of Theorem 2.1 of [20], we have the following result.

Lemma 2.1 If v ∈ Hr
A,β(�) and integers 0 ≤ k ≤ r, then

‖PN ,β,�v − v‖k,� ≤ c(β2N )
k−r
2 ‖v‖Hr

A,β (�). (2.5)

The above result with β = 1 was first given by Guo et al. see Theorem 2.3 of [9].

Next, let σN , j and ωN , j be the nodes and the weights of the standard Hermite–Gauss
interpolation, 0 ≤ j ≤ N , (cf. [8]). We take the nodes and the weights of the scaled Hermite–
Gauss interpolation as follows (cf. [22]),

σ
β
N , j = σN , j

β
, ω

β
N , j = 1

β
ωN , j e

σ 2
N , j , 0 ≤ j ≤ N .

It was shown by (2.6) of [22] that for any integer m ≥ 0,

N∑
j=0

φ(σ
β
N , j )ψ(σ

β
N , j )ω

β
N , j = (φ, ψ)�, ∀φ ∈ Qβ

m(�),ψ ∈ Qβ
2N+1−m(�). (2.6)

For any v ∈ C(�), the scaled Hermite–Gauss interpolation IN ,β,�v ∈ Qβ
N (�) is deter-

mined uniquely by

IN ,β,�v(σ
β
N , j ) = v(σ

β
N , j ), 0 ≤ j ≤ N . (2.7)

According to Lemma 2.2 of [22], we have the following result.

Lemma 2.2 If v ∈ Hr
A,β(�), integers r ≥ 1 and 0 ≤ k ≤ r , then

‖IN ,β,�v − v‖k,� ≤ c(βk + 1)(β2N )
1
3+ k−r

2 ‖v‖Hr
A,β (�). (2.8)

3 New Generalized Hermite Orthogonal Approximation and Interpolation

In this section, we develop the new generalized Hermite orthogonal approximation and inter-
polation, which match different asymptotic behaviors of considered functions at infinities
reasonably.
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3.1 New Generalized Hermite Functions

For any real numbers α and γ , the new generalized Hermite functions are defined by

Ĥα,β,γ

l (x) = Fα,γ (x)Hβ
l (x), β > 0, l ≥ 0,

where

Fα,γ (x) =
(
1 + 2

π
arctan x

)α (
1 − 2

π
arctan x

)γ

.

With the aid of the L’Hospital rule, we obtain that

lim
x→+∞

1 − 2
π
arctan x

(1 + x)−1 = 2

π
lim

x→+∞
(1 + x2)−1

(1 + x)−2 = 2

π
,

lim
x→−∞

1 + 2
π
arctan x

(1 + x)−1 = − 2

π
lim

x→−∞
(1 + x2)−1

(1 + x)−2 = − 2

π
.

In other words,

1 + 2

π
arctan x → 2, 1 − 2

π
arctan x ∼ 2

π(1 + x)
, as x → +∞,

1 − 2

π
arctan x → 2, 1 + 2

π
arctan x ∼ − 2

π(1 + x)
, as x → −∞. (3.1)

On the other hand, the scaledHermite functions Hβ
l ∈ L2(�) and so Hβ

l (x) = o((1+|x |)− 1
2 )

as |x | → ∞. Therefore,

Ĥα,β,γ

l (x) =
{
o((1 + |x |)−γ− 1

2 ), as x → +∞,

o((1 + |x |)−α− 1
2 ), as x → −∞.

Moreover, thanks to (2.1), the functions Ĥα,β,γ

l (x) are the l-th eigenfunctions of the following
Sturm-Liouville problem,

e
1
2 β2x2∂x

(
e−β2x2∂x

(
F−1

α,γ (x)e
1
2 β2x2v(x)

))
+ λ

β
l , F−1

α,γ (x)v(x) = 0, l ≥ 0. (3.2)

Now, let the weight function

ωα,γ (x) = F−2
α,γ (x) =

(
1 + 2

π
arctan x

)−2α (
1 − 2

π
arctan x

)−2γ

.

Thanks to (3.1), we have that

ωα,γ (x) = O((1 + |x |)2γ ), as x → +∞,

ωα,γ (x) = O((1 + |x |)2α), as x → −∞.
(3.3)

By virtue of (2.2), the set of all Ĥα,β,γ

l (x) is a complete L2
ωα,γ

(�)-orthogonal system, namely,

∫
�

Ĥα,β,γ

l (x)Ĥα,β,γ
m (x)ωα,γ (x)dx =

√
π

β
δl,m . (3.4)

Thus, for any v ∈ L2
ωα,γ

(�), we have

v(x) =
∞∑
l=0

v̂
α,β,γ

l Ĥα,β,γ

l (x), (3.5)
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with

v̂
α,β,γ

l = β√
π

∫
�

v(x)Ĥα,β,γ

l (x)ωα,γ (x)dx . (3.6)

3.2 New Generalized Hermite Orthogonal Approximation

Let
Q̂α,β,γ

N (�) = span
{
Ĥα,β,γ
0 (x), Ĥα,β,γ

1 (x), · · · , Ĥα,β,γ

N (x)
}
.

The orthogonal projection P̂N ,α,β,γ,� : L2
ωα,γ

(�) → Q̂α,β,γ

N (�) is defined by

(P̂N ,α,β,γ,�v − v, φ)ωα,γ ,� = 0, ∀φ ∈ Q̂α,β,γ

N (�),

or equivalently,

P̂N ,α,β,γ,�v(x) =
N∑
l=0

v̂
α,β,γ

l Ĥα,β,γ

l (x). (3.7)

Theorem 3.1 If v ∈ Hr
ωα,γ

(�) and integers 0 ≤ k ≤ r , then

‖P̂N ,α,β,γ,�v − v‖k,ωα,γ ,� ≤ c(β2N )
k−r
2 ‖F−1

α,γ (x)v‖Hr
A,β (�). (3.8)

Proof Since v ∈ Hr
ωα,γ

(�) ⊂ L2
ωα,γ

(�), we derive that

P̂N ,α,β,γ,�v(x) =
N∑
l=0

v̂
α,β,γ

l Ĥα,β,γ

l (x) = Fα,γ (x)
N∑
l=0

v̂
α,β,γ

l Hβ
l (x).

Let PN ,β,�v be the same as in (2.4).With the aid of (3.6), it is easy to show that all coefficients

v̂
α,β,γ

l are exactly the same as the coefficients of expansion (2.3) for the function F−1
α,γ (x)v(x).

In other words,

P̂N ,α,β,γ,�v(x) = Fα,γ (x)PN ,β,�(F−1
α,γ (x)v(x)).

Therefore,

‖∂kx (P̂N ,α,β,γ,�v − v)‖ωα,γ ,� = ‖∂kx (Fα,γ (PN ,β,�(F−1
α,γ v) − F−1

α,γ v))‖ωγ ,�

= ‖
k∑
j=0

C j
k ∂

k− j
x Fα,γ ∂

j
x

(
PN ,β,�

(
F−1

α,γ v
)

− F−1
α,γ v

)
‖ωα,γ ,�.

(3.9)

Thanks to (3.1), a direct calculation shows

|∂k− j
x (Fα,γ (x))| ≤ c

(
1 + 2

π
arctan x

)α (
1 − 2

π
arctan x

)γ

, 0 ≤ j ≤ k. (3.10)

By using (3.10) and (2.5), we obtain from (3.9) that

‖∂kx (P̂N ,α,β,γ,�v − v)‖ωα,γ ,� ≤ c
k∑
j=0

C j
k ‖∂ j

x (PN ,β,�(F−1
α,γ v) − F−1

α,γ v)‖�

≤ c(β2N )
k−r
2 ‖F−1

α,γ (x)v‖Hr
A,β (�).

This leads to the desired result (3.8). �
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In numerical analysis of the related spectral methods, we need the orthogonal approxima-
tion in the space H1

ωα,γ
(�). The orthogonal projection P̂1

N ,α,β,γ,� : H1
ωα,γ

(�) → Q̂α,β,γ

N (�)

is defined by

(∂x (P̂
1
N ,α,β,γ,�v − v), ∂xφ)ωα,γ ,� + (P̂1

N ,α,β,γ,�v − v, φ)ωα,γ ,� = 0, ∀φ ∈ Q̂α,β,γ

N (�).

(3.11)

Theorem 3.2 If v ∈ Hr
ωα,γ

(�) and integer r ≥ 1, then

‖P̂1
N ,α,β,γ,�v − v‖1,ωα,γ ,� ≤ c(β2N )

1−r
2 ‖F−1

α,γ v‖rHA,β (�). (3.12)

Proof According to the projection theorem, we have

‖P̂1
N ,α,β,γ,�v − v‖1,ωα,γ ,� ≤ ‖φ − v‖1,ωα,γ ,�, ∀φ ∈ Q̂α,β,γ

N (�). (3.13)

Let w(x) = F−1
α,γ (x)v(x). Since v ∈ Hr

ωα,γ
(�), we assert w ∈ Hr (�). Therefore, we could

take φ = Fα,γ PN ,β,�w ∈ Q̂α,β,γ

N (�) in (3.13). Next, we use (2.5) to verify that

‖Fα,γ PN ,β,�w − v‖ωα,γ ,� = ‖Fα,γ (PN ,β,�w − w)‖ωα,γ ,�

= ‖PN ,β,�w − w‖�

≤ c(β2N )−
r
2 ‖w‖Hr

A,β (�)

= c(β2N )−
r
2 ‖F−1

α,γ v‖Hr
A,β (�). (3.14)

Also, we use (3.10) and (2.5) to deduce that

‖∂x (Fα,γ PN ,β,�w − v)‖ωα,γ ,� = ‖∂x (Fα,γ (PN ,β,�w − w))‖ωα,γ ,�

≤ ‖Fα,γ ∂x (PN ,β,�w − w)‖ωα,γ ,�

+‖∂x Fα,γ (PN ,β,�w − w)‖ωα,γ ,�

≤ ‖∂x (PN ,β,�w − w)‖� + c‖PN ,β,�w − w‖�

≤ c(β2N )
1−r
2 ‖F−1

α,γ v‖Hr
A,β (�). (3.15)

A combination of (3.13)–(3.15) leads to the desired result (3.12). �
3.3 New Generalized Hermite–Gauss Interpolation

In this subsection, we propose the new generalized Hermite–Gauss interpolation. Let σ
β
N , j

and ω
β
N , j be the same as in Sect. 2. We set

σ̂
β
N , j = σ

β
N , j , ω̂

α,β,γ

N , j = F−2
α,γ

(
σ̂

β
N , j

)
ω

β
N , j , 0 ≤ j ≤ N . (3.16)

The related discrete inner product and norm are defined by

(u, v)N ,α,β,γ,� =
N∑
j=0

u
(
σ̂

β
N , j

)
v

(
σ̂

β
N , j

)
ω̂

α,β,γ

N , j , ‖v‖N ,α,β,γ,� = (v, v)
1
2
N ,α,β,γ,�.

For any φ ∈ Q̂α,β,γ
m (�) and ψ ∈ Q̂α,β,γ

2N+1−m(�), we have φ(x) = Fα,γ (x)qφ(x) and ψ(x) =
Fα,γ (x)qψ(x), where qφ ∈ Qβ

m(�) and qψ ∈ Qβ
2N+1−m(�), respectively. Thereby, we use

(2.6) to verify that
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(φ, ψ)ωα,γ ,� = (qφ, qψ)� =
N∑
j=0

qφ

(
σ

β
N , j

)
qψ

(
σ

β
N , j

)
ω

β
N , j

=
N∑
j=0

φ
(
σ̂

β
N , j

)
ψ

(
σ̂

β
N , j

)
ω̂

α,β,γ

N , j = (φ, ψ)N ,α,β,γ,�,

∀φ ∈ Q̂α,β,γ
m (�),ψ ∈ Q̂α,β,γ

2N+1−m(�). (3.17)

In particular,

‖φ‖ωα,γ ,� = ‖φ‖N ,α,β,γ,�, ∀ φ ∈ Q̂α,β,γ

N (�). (3.18)

For any v ∈ C(�), the new generalized Hermite–Gauss interpolation ÎN ,α,β,γ,�v ∈
Q̂α,β,γ

N (�) is determined uniquely by

ÎN ,α,β,γ,�v
(
σ̂

β
N , j

)
= v(σ̂

β
N , j ), 0 ≤ j ≤ N . (3.19)

We now estimate the approximation error of the interpolation ÎN ,α,β,γ,�v.

Theorem 3.3 If v ∈ Hr
ωα,γ

(�), F−1
α,γ v ∈ Hr

A,β(�), integers r ≥ 1 and 0 ≤ k ≤ r , then

‖ ÎN ,α,β,γ,�v − v‖k,ωα,γ ,� ≤ c(βk + 1)(β2N )
1
3+ k−r

2 ‖F−1
α,γ v‖Hr

A,β (�). (3.20)

Proof We have from (2.7) and (3.19) that

F−1
α,γ (σ̂

β
N , j ) ÎN ,α,β,γ,�v

(
σ̂

β
N , j

)
= IN ,β,�

(
F−1

α,γ (x)v(x)
)∣∣∣

x=σ̂
β
N , j

, 0 ≤ j ≤ N .

Moreover, both of F−1
α,γ (x) ÎN ,α,β,γ,�v(x) and IN ,β,�(F−1

α,γ (x)v(x)) belong to the same finite-

dimensional set Qβ
N (�). The previous statements imply

ÎN ,α,β,γ,�v(x) = Fα,γ (x)IN ,β,�

(
F−1

α,γ (x)v(x)
)
.

Consequently, we use (3.10) and (2.8) to verify that∥∥∥∂kx ( ÎN ,α,β,γ,�v − v)

∥∥∥
ωα,γ ,�

=
∥∥∥∂kx

(
Fα,γ

(
IN ,β,�

(
F−1

α,γ v
)

− F−1
α,γ v

))∥∥∥
ωα,γ ,�

=
∥∥∥∥∥∥

k∑
j=0

C j
k ∂

k− j
x Fα,γ ∂

j
x

(
IN ,β,�

(
F−1

α,γ v
)

− F−1
α,γ v

)∥∥∥∥∥∥
ωα,γ ,�

≤ c
k∑
j=0

C j
k

∥∥∥∂
j
x

(
IN ,β,�

(
F−1

α,γ v
)

− F−1
α,γ v

)∥∥∥
�

≤ c(βk + 1)(β2N )
1
3+ k−r

2

∥∥∥F−1
α,γ v

∥∥∥
Hr
A,β (�)

.

This leads to the desired result (3.20). �
Furthermore, we use (3.19), (3.18) and (3.20) successively, to derive that

|(v, φ)ωα,γ ,� − (v, φ)N ,α,β,γ,�| = |(v, φ)ωα,γ ,� − ( ÎN ,α,β,γ,�v, φ)N ,α,β,γ,�|
= |(v − ÎN ,α,β,γ,�v, φ)ωα,γ ,�|
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≤ c‖v − ÎN ,α,β,γ,�v‖ωα,γ ,�‖φ‖ωα,γ ,�

≤ c(β2N )
1
3− r

2 ‖F−1
α,γ v‖Hr

A,β (�)‖φ‖ωα,γ ,�, ∀φ ∈ Q̂α,β,γ

N (�).

(3.21)

In the end of this section, we derive an inequality which will be used in Sect. 4.

Proposition 3.1 For any φ ∈ Q̂α,β,γ

N (�) and 1 ≤ p ≤ q ≤ ∞,
∥∥∥∥φe

(
1
2− 1

q

)
β2x2

F
−1+ 2

q
α,γ

∥∥∥∥
Lq

ωα,γ (�)

≤ c
(
βN

5
6

) 1
p − 1

q

∥∥∥∥φe

(
1
2− 1

p

)
β2x2

F
−1+ 2

p
α,γ

∥∥∥∥
L p

ωα,γ (�)

.(3.22)

Proof Let Sβ
N (�) = span{ Hl(βx) | 0 ≤ l ≤ N }. Due to Theorem 2.23 of [6], we have

(∫
�

|ψ(x)|qe−β2x2dx

) 1
q ≤ c(βN

5
6 )

1
p − 1

q

(∫
�

|ψ(x)|pe−β2x2dx

) 1
p

, ∀ψ ∈ Sβ
N (�).

For any φ ∈ Q̂α,β,γ

N (�), there exists ψ ∈ Sβ
N (�) such that ψ(x) = e

1
2 β2x2F−1

α,γ (x)φ(x).
This leads to the desired result. �

We use (3.1) to assert that there exists positive constant ξα,γ depending only on α and γ ,

such that e
1
4β2x2F

− 1
2

α,γ >
1

ξα,γ

for all x ∈ �. Consequently, we obtain from (3.22) that

‖φ‖L4
ωα,γ

(�) ≤ cξα,γ

∥∥∥∥φe
1
4β2x2F

− 1
2

α,γ

∥∥∥∥
L4

ωα,γ
(�)

≤ cξα,γ β
1
4 N

5
24 ‖φ‖ωα,γ ,�. (3.23)

3.4 Numerical Test

We now check the efficiency of the new approximation given by (3.7). We consider the test
function

v(x) =
(
1 + 2

π
arctanx

)
(1 + x2)μ sin kx, (3.24)

which oscillates as |x | increases. Moreover, its amplitude varies like |x |2μ as x → +∞,
and varies like |x |2μ−1 as x → −∞. Accordingly, this test function belongs to the weighted
space L2

χ (�), provided that the weight function χ(x) behaves like |x |η(η < −4μ − 1) as
x → +∞, and behaves like |x |ξ (ξ < −4μ+1) as x → −∞. According to (3.3), the weight
function ωα,γ (x) ∼ c|x |2γ as x → +∞, and ωα,γ (x) ∼ c|x |2α as x → −∞. Hence, the test
function (3.24) could be approximated by the generalized Hermite orthogonal approximation
(3.7) with γ < −2μ − 1

2 and α < −2μ + 1
2 .

We measure the errors of the orthogonal approximation by the global weighted error

EN ,gw =
⎛
⎝ N∑

j=0

(
v

(
σ̂

β
N , j

)
− P̂N ,α,β,γ v

(
σ̂

β
N , j

))2
ω̂

α,β,γ

N , j

⎞
⎠

1
2

,

and the point-wise error

EN ,pw = max
0≤ j≤N

|v(σ̂
β
N , j ) − P̂N ,β,γ,�v(σ̂

β
N , j )|.
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Table 1 Global weighted errors with α = 1 and γ = 0

β = 1 β = 3
2

k = 1 k = 2 k = 3 k = 1 k = 2 k = 3

N = 20 1.21E−2 3.03E−2 6.28E−2 8.76E−4 2.29E−3 5.24E−3

N = 60 3.59E−4 9.76E−4 2.27E−3 2.75E−6 7.48E−6 1.98E−5

N = 100 2.49E−5 6.95E−5 1.68E−4 7.78E−8 1.43E−7 3.66E−7

N = 140 2.64E−6 7.45E−6 1.84E−5 1.73E−7 8.97E−8 1.48E−7

N = 180 3.61E−7 1.03E−6 2.58E−6 1.42E−8 2.80E−8 4.09E−8

Table 2 Point-wise errors with α = 1 and γ = 0

β = 1 β = 3
2

k = 1 k = 2 k = 3 k = 1 k = 2 k = 3

N = 20 9.08E−3 2.30E−2 4.81E−2 6.74E−4 1.80E−3 4.14E−3

N = 60 2.49E−4 6.79E−4 1.58E−3 2.16E−6 5.59E−6 1.40E−5

N = 100 1.69E−5 4.72E−5 1.14E−4 9.69E−8 1.72E−7 3.02E−7

N = 140 1.76E−6 4.98E−6 1.23E−5 2.40E−7 1.36E−7 2.00E−7

N = 180 2.39E−7 6.84E−7 1.71E−6 2.27E−8 4.51E−8 6.73E−8

Table 3 Global weighted errors with α = γ = 0

β = 1 β = 3
2

k = 1 k = 2 k = 3 k = 1 k = 2 k = 3

N = 20 1.39E−2 3.45E−2 6.97E−2 1.09E−3 2.89E−3 6.47E−3

N = 60 2.47E−4 1.20E−3 2.75E−3 4.86E−6 1.10E−5 2.62E−5

N = 100 3.22E−5 8.89E−5 2.12E−4 1.02E−7 2.29E−7 4.77E−7

N = 140 3.48E−6 9.77E−6 2.38E−5 2.64E−7 1.33E−7 2.32E−7

N = 180 4.87E−7 1.38E−6 3.43E−6 2.11E−8 4.13E−8 5.99E−8

In Tables 1 and 2, we list the values of EN ,gw and EN ,pw vs. the mode N , with the
parameters μ = −3, α = 1, γ = 0 and different k. They show the convergence of the new
approximation. We also find that the suitable choice of parameter β leads to better numerical
results sometimes. Moreover, the approximation is better for the less oscillating solutions,
as is predicted.

Remark 3.1 The text function (3.24) with μ < − 1
2 could be approximated also by the

standard Hermite functions, i.e., α = γ = 0. In Tables 3 and 4, we list the values of EN ,gw

and EN ,pw vs. the mode N , with the parameters μ = −3, α = γ = 0 and different k. We
see from Tables 1-4 that the numerical results with α = 1, γ = 0 are better than those of the
numerical results with α = γ = 0.

Remark 3.2 If the asymptotic behaviors of approximated function are not fully known, then
we could adopt the standard orthogonal approximation using the Hermite polynomials. How-
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Table 4 Point-wise errors with α = γ = 0

β = 1 β = 3
2

k = 1 k = 2 k = 3 k = 1 k = 2 k = 3

N = 20 1.02E−2 2.52E−2 5.08E−2 8.21E−4 2.20E−3 4.92E−3

N = 60 3.16E−4 8.47E−4 1.94E−3 3.17E−6 8.26E−6 1.93E−5

N = 100 2.30E−5 6.35E−5 1.51E−4 9.63E−8 1.81E−7 2.95E−7

N = 140 2.48E−6 6.97E−6 1.70E−5 2.45E−7 1.38E−7 2.06E−7

N = 180 3.46E−7 9.81E−7 2.43E−6 2.30E−8 4.58E−8 6.82E−8

Table 5 Global
ωα,γ (x)-weighted errors of
approximation (3.25)

N = 20 N = 60 N = 100 N = 140 N = 180

k = 1 1.74E−2 6.35E−4 4.81E−5 5.36E−6 7.65E−7

k = 2 4.17E−2 1.68E−3 1.32E−4 1.49E−5 2.16E−6

k = 3 8.08E−2 3.77E−3 3.10E−4 3.61E−5 5.30E−6

Table 6 Point-wise errors of
approximation (3.25)

N = 20 N = 60 N = 100 N = 140 N = 180

k = 1 1.27E−2 4.48E−4 3.43E−5 3.81E−6 5.42E−7

k = 2 3.05E−2 1.18E−3 9.39E−5 1.06E−5 1.53E−6

k = 3 5.89E−2 2.65E−3 2.21E−4 2.56E−5 3.75E−6

ever, in this case, the small global e−x2 -weighted errors do not imply the small point-wise
errors automatically. But, we may follow the idea of London to approximate the auxiliary
function v∗(x) = v(x)sechx by using the Hermite functions, see [22]. More precisely, we

let v̂∗
l be the coefficients of the expansion of v∗(x) in terms of e− 1

2 x
2
Hl(x). Then we obtain

the following approximation to the original function,

P∗
Nv(x) = 1

sechx

(
N∑
l=0

v̂∗
l e

− 1
2 x

2
Hl(x)

)
. (3.25)

We could use (2.5) with k = 0 and β = 1 to verify that

||P∗
Nv − v||2sechx,� = ‖PN ,1,�v∗ − v∗‖� ≤ cN− r

2 ‖vsechx‖Hr
A,1(�).

Since the weight function sech2x decays like e−2|x | as |x | → ∞, the above global weighted
errors are small usually. But the corresponding global errors with the weight functionωα,γ (x)
are bigger than those of the approximation (3.7). In Table 5, we list the global ωα,γ (x)-
weighted errors of the approximation (3.25) with the mode N = 10 and β = 1 for the test
function with μ = −3. They are really bigger than those of the approximation (3.7) as listed
in Table 1.

In Table 6, we list the corresponding point-wise errors of the approximation (3.25). We
find that the point-wise errors of the approximation (3.25) are also bigger than those of the
approximation (3.7). Furthermore, in the applications of the above two approximations to
numerical solutions of differential equations defined on thewhole line,we have tomultiply the
underlying differential equations by theweight functions and integrate the resulting equalities
by parts, and then derive their weak formulations. Moreover, in the numerical analysis of
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the corresponding spectral methods, we need some results on the H1
sech2x

(�)-orthogonal

approximation and the H1
ωα,γ

(�)-orthogonal approximation, respectively. For this purpose,
it seems simpler to use the approximation with the weight function ωα,γ (x) usually.

Remark 3.3 We may also use the generalized Jacobi irrational approximation proposed in
[12]. For a, b > −1, J (a,b)

l (x) stands for the Jacobi polynomial of degree l. For any real
numbers a and b,

â :=
{−a, a ≤ −1,
0, a > −1,

ā :=
{−a, a ≤ −1,
a, a > −1,

(likewise for b̂ and b̄). The symbol [a] represents the largest integer ≤ a. The generalized
Jacobi functions are given by

J̃ (a,b)
l (x) :=

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

J (a,b)
l (x), a, b > −1,

(1 + x)−b J (a,−b)
l−[−b](x), a > −1, b ≤ −1,

(1 − x)−a J (−a,b)
l−[−a](x), a ≤ −1, b > −1,

(1 − x)−a(1 + x)−b J (−a,−b)
l−[−a]−[−b](x), a, b ≤ −1.

The generalized Jacobi irrational functions are defined by

R(a,b)
l (x) = J̃ (a,b)

l (
x√

x2 + 1
), l ≥ [â] + [b̂].

The corresponding weight function is

ω
(a,b)
R (x) =

(√
x2 + 1 + x

)b−a
(x2 + 1)−

a+b+3
2 .

According to (3.6) of [12], we know that

ω
(a,b)
R (x) ∼ c|x |−2a−3, as x → +∞,

ω
(a,b)
R (x) ∼ c|x |−2b−3, as x → −∞. (3.26)

The generalized Jacobi irrational functions form a complete L2
ω

(a,b)
R

(�)-orthogonal system.

We now approximate the test function (3.24) in a specific way, namely,

P∗∗
N v(x) =

N∑
l=0

v̂∗∗
l R

(
2μ− 11

12 ,2μ− 23
12

)
l (x), (3.27)

v∗∗
l being the coefficients of the expansion of v(x) in terms of R

(2μ− 11
12 ,2μ− 23

12 )

l (x). According

to (3.3) and (3.26), the asymptotic behaviors of the weight function ω
(2μ− 11

12 ,2μ− 23
12 )

R (x) used
in the approximation (3.27) are exactly the same as the asymptotic behaviors of the weight
function ω−2μ+ 5

12 ,−2μ− 7
12

(x) used in the approximation (3.7). Thus, we could compare the
accuracy of the above two approximations.

Letμ = −3 in the test function (3.24). In Tables 7 and 8, we list the globalω
(− 83

12 ,− 95
12 )

R (x)-
weight errors and the point-wise errors of the approximation (3.27). By comparing Tables 1
and 2with Tables 7 and 8,we find that the approximations (3.27) provides the better numerical
results than those of the approximations (3.7) with β = 1. But the approximations (3.7) with
β = 3

2 provides the better numerical results than those of the approximations (3.27).However,
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Table 7 Global

ω

(
− 83

12 ,− 95
12

)
R (x)-weighted errors

of approximation (3.27)

N = 20 N = 60 N = 100 N = 140 N = 180

k = 1 1.30E−3 4.64E−4 3.14E−6 3.28E−7 8.91E−8

k = 2 2.11E−3 2.82E−4 7.38E−5 7.10E−6 3.24E−7

k = 3 4.96E−3 3.45E−4 4.34E−5 3.11E−6 6.76E−7

Table 8 Point-wise errors of
approximation (3.27)

N = 20 N = 60 N = 100 N = 140 N = 180

k = 1 1.23E−3 4.46E−4 2.41E−6 2.01E−7 4.42E−8

k = 2 2.05E−3 2.18E−4 5.39E−5 1.12E−6 1.34E−7

k = 3 4.82E−3 2.74E−4 2.12E−5 1.56E−6 5.75E−7

in their applications to numerical solutions of differential equations, we have to derive the
weak formulations of underlying problems, and need some results on the H1

ω
(− 83

12 ,− 95
12 )

R

(�)-

orthogonal approximation and the H1
ω− 67

12 ,− 79
12

(�)-orthogonal approximation, respectively.

It seems simpler to use the approximation (3.7) than the approximation (3.27). Besides, in
actual computation, it is easier to perform the generalized Hermite orthogonal approximation
than the generalized Jacobi irrational orthogonal approximation.

4 Generalized Hermite Spectral Method

In this section, we propose the new generalized Hermite spectral method.

4.1 A Linear Problem

Let d be a positive constant. We consider the following model problem,⎧⎨
⎩

−∂2xU (x) + dU (x) = f (x), x ∈ �,

U (x)x−μ → 0, as x → +∞,

U (x)x−ν → 0, as x → −∞,

(4.1)

where f ∈ L2
ωα,γ

(�), ν < −α − 1

2
and μ < −γ − 1

2
.

In order to derive a proper weak formulation of (4.1), we set V (�) = H1
ωα,γ

(�), and
introduce the bilinear form

Ad,α,γ,�(u, v) =
∫

�

∂xu(x)∂xv(x)ωα,γ (x)dx +
∫

�

∂xu(x)v(x)∂xωα,γ (x)dx

+ d
∫

�

u(x)v(x)ωα,γ (x)dx, ∀u, v ∈ V (�). (4.2)

Let

Gα,γ (x) = 4

π(1 + x2)

(
γ

(
1 − 2

π
arctan x

)−1

− α

(
1 + 2

π
arctan x

)−1
)

.

Then

∂xωα,γ (x) = ωα,γ (x)Gα,γ (x), ∂2xωα,γ (x) = ωα,γ (x)
(
∂xGα,γ (x) + G2

α,γ (x)
)

. (4.3)
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Thanks to (3.1), we observe that

Gα,γ (x) ∼ 2

π(1 + x2)
(πγ (1 + x) − α), as x → +∞,

Gα,γ (x) ∼ 2

π(1 + x2)
(γ − πα(1 + x)), as x → −∞.

Hence, there exists a positive constant cα,γ depending only on α and γ , such that

|Gα,γ (x)| ≤ cα,γ , ∀x ∈ �. (4.4)

Furthermore,

∂xGα,γ (x) = −2x

1 + x2
Gα,γ (x) + 8

π2(1 + x2)2

(
γ

(
1 − 2

π
arctan x

)−2

+α

(
1 + 2

π
arctan x

)−2
)

.

Due to (3.1), we have that

∂xGα,γ (x) ∼ − 4x

π(1 + x2)2
(πγ (1 + x) − α)

+ 2

π2(1 + x2)2
(γ π2(1 + x)2 + α), as x → +∞,

∂xGα,γ (x) ∼ − 4x

π(1 + x2)2
(γ − πα(1 + x))

+ 2

π2(1 + x2)2
(γ + απ2(1 + x)2), as x → −∞.

Thus, there exists a positive constant dα,γ depending only on α and γ , such that

|∂xGα,γ (x) + G2
α,γ (x)| ≤ 2dα,γ , ∀x ∈ �. (4.5)

With the aid of (4.4) and the Cauchy inequality, a direct calculation shows

|Ad,α,γ,�(u, v)| ≤ 1

2

(
(1 + cα,γ )‖∂xu‖2ωα,γ ,� + d‖u‖2ωα,γ ,� + ‖∂xv‖2ωα,γ ,�

+ (d + cα,γ )‖v‖2ωα,γ ,�

)
, ∀u, v ∈ V (�). (4.6)

Next, we use (4.5) to derive that for any v ∈ V (�),∫
�

∂xv(x)v(x)∂xωα,γ (x)dx = −1

2

∫
�

v2(x)∂2xωα,γ (x)dx

= −1

2

∫
�

v2(x)ωα,γ (x)
(
∂xGα,γ (x) + G2

α,γ (x)
)
dx

≥ −dα,γ ‖v‖2ωα,γ ,�. (4.7)

Inserting (4.7) into (4.2) with u = v, we obtain

Ad,α,γ,�(v, v) ≥ ‖∂xv‖2ωα,γ ,� + (d − dα,γ )‖v‖2ωα,γ ,�, ∀v ∈ V (�). (4.8)

We now derive another property of the bilinear form Ad,α,γ,�(u, v), which plays an
important role in spectral method. Let W (�) � V (�), and Q∗

N (�) be a finite-dimensional
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subspace of V (�). In addition, WN (�) = W (�) ∩ Q∗
N (�). We define the operator

∗P1
N ,d,α,β,γ,� : W (�) → WN (�), by

Ad,γ,�

(
∗P1

N ,d,α,β,γ,�v − v, φ
)

= 0, ∀ φ ∈ WN (�). (4.9)

Proposition 4.1 If v ∈ W (�), w ∈ WN (�) and d > dα,γ , then

Ad,α,γ,�

(
∗P1

N ,d,α,β,γ,�v − v, ∗P1
N ,d,α,β,γ,�v − v

)
≤ Ad,α,γ,�(w − v,w − v). (4.10)

Proof A direct calculation shows that

Ad,α,γ,�(w − v,w − v) = Ad,α,γ,�

(
∗P1

N ,d,α,β,γ,�v − v, ∗P1
N ,d,α,β,γ,�v − v

)

+Ad,α,γ,�

(
∗P1

N ,d,α,β,γ,�v − w, ∗P1
N ,d,α,β,γ,�v − w

)

− 2Ad,α,γ,�

(
∗P1

N ,d,α,β,γ,�v − v, ∗P1
N ,d,α,β,γ,�v − w

)
.

Thanks to (4.9), we have

Ad,α,γ,�(∗P1
N ,d,α,β,γ,�v − v, ∗P1

N ,d,α,β,γ,�v − w) = 0.

Due to d > dα,γ , the property (4.8) implies

Ad,α,γ,�(∗P1
N ,d,α,β,γ,�v − w, ∗P1

N ,d,α,β,γ,�v − w) ≥ 0.

Then, the desired inequality (4.10) follows from the previous statements immediately. �
Evidently, for any u, v ∈ V (�), we have ∂xu(x)v(x)ωα,γ (x) → 0 as |x | → ∞. By

multiplying the equation in (4.1) by v(x)ωα,γ (x) and integrating the resulting equality by
parts, we obtain a weak formulation of (4.1). It is to look for U ∈ V (�) such that

Ad,α,γ,�(U, v) = ( f, v)ωα,γ ,�, ∀v ∈ V (�). (4.11)

According to (4.6), (4.8) and the Lax-Milgram lemma, the problem (4.11) admits a unique
solution as long as d > dα,γ .

For solving the above problemwithd > dα,γ numerically,wedefine thefinite-dimensional
set

VN (�) = V (�) ∩ Q̂α,β,γ

N (�).

The spectral method for solving problem (4.11) is to seek uN ∈ VN (�) such that

Ad,α,γ,�(uN , φ) = ( f, φ)ωα,γ ,�, ∀φ ∈ VN (�). (4.12)

For checking the existence of solutions of (4.12), it suffices to prove the uniqueness of
its solutions. Assume that both of u(1)

N (x) and u(2)
N (x) are solutions of (4.12), and ũN (x) =

u(1)
N (x) − u(2)

N (x) ∈ VN (�). Then Ad,α,γ,�(ũN , φ) = 0 for any φ ∈ VN (�). Putting
φ = ũN ∈ VN (�) in the above equation, we use (4.8) to obtain

‖∂x ũN‖2ωα,γ ,� + (d − dα,γ )‖ũN‖2ωα,γ ,� ≤ Ad,α,γ,�(ũN , ũN ) = 0.

Since d > dα,γ , we have ũN (x) ≡ 0. This means the uniqueness of solution of (4.12).
We next estimate the error of numerical solution uN (x). To do this, we introduce the

auxiliary operator P
1
N ,d,α,β,γ,� : V (�) → VN (�), defined by

Ad,α,γ,�

(
P
1
N ,d,α,β,γ,�v − v, φ

)
= 0, ∀ φ ∈ VN (�). (4.13)
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We have from (4.11) and (4.13) that

Ad,α,γ,�

(
P
1
N ,d,α,β,γ,�U, φ

)
= ( f, φ)ωα,γ ,�, ∀φ ∈ VN (�). (4.14)

Subtracting (4.14) from (4.12), yields

Ad,α,γ,�

(
uN − P

1
N ,d,α,β,γ,�U, φ

)
= 0, ∀φ ∈ VN (�).

Taking φ = uN − P
1
N ,d,α,β,γ,�U in the above equation, we obtain

Ad,α,γ,�

(
uN − P

1
N ,d,α,β,γ,�U, uN − P

1
N ,d,α,β,γ,�U

)
= 0.

This fact, together with (4.8), implies uN = P
1
N ,d,α,β,γ,�U.

So far, it remains to estimate the approximation error of the auxiliary operator

P
1
N ,d,α,β,γ,�U. For this purpose, we use Proposition 4.1 with

W (�) = V (�), Q∗
N (�) = Q̂α,β,γ

N (�), WN (�) = VN (�),

v = U, ∗P1
N ,d,α,β,γ,�v = P

1
N ,d,α,β,γ,�U, w = P̂1

N ,α,β,γ,�U.

Then, by using (4.8), (4.10) and (4.6) successively, we verify that
∥∥∥∂x

(
P
1
N ,d,α,β,γ,�U −U

)∥∥∥2
ωα,γ ,�

+ (d − dα,γ )

∥∥∥P1
N ,d,α,β,γ,�U −U

∥∥∥2
ωα,γ ,�

≤ Ad,α,γ,�

(
P
1
N ,d,α,β,γ,�U −U, P

1
N ,d,α,β,γ,�U −U

)

≤ Ad,α,γ,�

(
P̂1
N ,α,β,γ,�U −U, P̂1

N ,α,β,γ,�U −U
)

≤
(
1 + 1

2
cα,γ

) ∥∥∥∂x

(
P̂1
N ,α,β,γ,�U −U

)∥∥∥2
ωα,γ ,�

+
(
d + 1

2
cα,γ

) ∥∥∥P̂1
N ,α,β,γ,�U −U

∥∥∥2
ωα,γ ,�

. (4.15)

Finally, we use (4.15) and (3.12) to reach that for d > dα,γ and integer r ≥ 2,

‖U − uN‖2H1
ωα,γ

(�)
=

∥∥∥∂x

(
P
1
N ,d,α,β,γ,�U −U

)∥∥∥2
ωα,γ ,�

+
∥∥∥P1

N ,d,α,β,γ,�U −U
∥∥∥2

ωα,γ ,�

≤
(
1 + 1

d − dα,γ

) ((
1 + 1

2
cα,γ

) ∥∥∥∂x

(
P̂1
N ,d,α,β,γ,�U −U

)∥∥∥2
ωα,γ ,�

+
(
d + 1

2
cα,γ

) ∥∥∥P̂1
N ,d,α,β,γ,�U −U

∥∥∥2
ωα,γ ,�

)

≤ c

(
1 + 1

d − dα,γ

) (
d + 1 + 1

2
cα,γ

)
(β2N )

1−r
2

∥∥∥F−1
α,γU

∥∥∥
Hr
A,β (�)

.

(4.16)

Remark 4.1 In the numerical analysis of spectral scheme (4.12), we require d > dα,γ . But

this restriction is not essential. Indeed, we may take θ >

√
dα,γ

d and d̃ = θ2d . Let y = x

θ
,

V (y) = U (x) and F(y) = θ2 f (x). Then the problem (4.1) becomes
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⎧⎨
⎩

−∂2y V (y) + d̃V (y) = F(y), y ∈ �,

V (y)y−μ → 0, as y → +∞,

V (y)y−ν → 0, as y → −∞.

Clearly, d̃ > dα,γ . Thus, the previous analysis is also valid for the corresponding spectral
scheme of the above reformed problem.

We now describe the implementation for the spectral scheme (4.12). Let

φl(x) = π− 1
4 Ĥα,β,γ

l (x), 0 ≤ l ≤ N .

We expand the numerical solution as

uN (x) =
N∑
l=0

ûlφl(x).

Inserting the above expression into (4.12) with φ = φk(x), we obtain

N∑
l=0

(
(∂xφl , ∂xφk)ωα,γ ,� + (∂xφl , φkGα,γ )ωα,γ ,� + d(φl , φk)ωα,γ ,�

)
ûl

= ( f, φk)ωα,γ ,�, 0 ≤ k ≤ N . (4.17)

We can rewrite the system (4.17) as a compact matrix form. To do this, we introduce the
matrices A = (ak,l)0≤k,l≤N , B = (bk,l)0≤k,l≤N and C = (ck,l)0≤k,l≤N , with the following
entries:

ak,l = (∂xφl , ∂xφk)ωα,γ ,�, bk,l = (∂xφl , φkGα,γ )ωα,γ ,�, ck,l = (φl , φk)ωα,γ ,�.

Further, let û = (û0, û1, · · · , ûN )T and F = (F0, F1, · · · , FN )T with Fk = ( f, φk)ωα,γ ,�.

Then, the system (4.17) becomes

(A + B + dC)û = F.

We now use the spectral scheme (4.12) (equivalent to the system (4.17)) to solve problem
(4.11). We take the test function

U (x) =
(
1 + 2

π
arctan x

)
(1 + x2)−3 sin x . (4.18)

According to (3.1) and (3.3), we know that U ∈ L2
ωα,γ

(�) for any α <
13

2
and γ <

11

2
.

Thus, we could use the spectral scheme (4.12) with such parameters α and γ.

We use the spectral scheme (4.12) with α = 4 and γ = 3 to solve problem (4.11) with
d = 1. For comparison, we also solve the same problem (4.11) by the spectral scheme (4.12)
with α = γ = 0, which is equivalent to the spectral method using the Hermite functions
proposed in [9].We shall measure the numerical accuracy by the same global weighted errors

EN ,gw =
⎛
⎝ N∑

j=0

(
U

(
σ̂

β
N , j

)
− uN

(
σ̂

β
N , j

))2
ω̂

α,β,γ

N , j

⎞
⎠

1
2

,

and the same point-wise errors

EN ,pw = max
0≤ j≤N

∣∣∣U
(
σ̂

β
N , j

)
− uN

(
σ̂

β
N , j

)∣∣∣ .
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Fig. 1 Comparison of numerical errors. Left global weighted errors; Right point-wise errors

In Fig. 1, we plot the values of EN ,gw and EN ,pw withβ = 1 vs
√
N . The numerical results

demonstrate the convergence of the scheme (4.12) with the above parameters α and γ . They
also show that the numerical results with α = 4 and γ = 3 are better than the numerical
results with α = γ = 0. In fact, the base functions Ĥ4,1,3

l (x) simulate the asymptotic

behavior of the test function (4.18) more reasonably than the base functions Ĥ0,1,0
l (x). This

is one of the advantages of our new method (4.12).

4.2 Fisher Equation

In some practical problems, we know the boundary conditions at infinity exactly. In this
case, we may use certain variable transformation to derive an alternative form of the original
problems with homogeneous boundary conditions, and use the generalized Hermite approx-
imation with α = γ = 0. As an example of nonlinear problems, we consider the Fisher
equation as follows,{

∂tU (x, t) − ∂2xU (x, t) − aU (x, t)(1 −U (x, t)) = f (x, t), x ∈ �, 0 < t ≤ T,

U (x, 0) = U0(x), x ∈ �,
(4.19)

where the positive constant a is a measure of intensity of insects. Guo and Chen [5] found
the following heteroclinic solutions of the Fisher equation with f (x, t) ≡ 0,

U (x, t) = 1 − ε

2
+ ε

1 + A
B e

bη
− AB(

Ae
bη
2 + Be− bη

2

)2 , (4.20)

where A and B are arbitrary constants, ε = ±1, b =
√

a
6 and η = x − 5

6

√
6aεt . If ε = 1,

then U (x, t) → 1 as x → −∞, and U (x, t) → 0 as x → ∞. If ε = −1, then U (x, t) → 0
as x → −∞, and U (x, t) → 1 as x → ∞.

We now derive the weak formulation of (4.19), which depends on the asymptotic behavior
of U (x, t) at infinities. We assume that

U (x, t)∂xU (x, t)ωα,γ (x) → 0, as |x | → ∞, 0 ≤ t ≤ T, a.e.. (4.21)

Indeed, if U (x, t) ∈ H1
ωα,γ

(�) for 0 ≤ t ≤ T, then

U (x, t)ω
1
2
α,γ (x) = o

(
x− 1

2

)
, ∂xU (x, t)ω

1
2
α,γ (x) = o

(
x− 1

2

)
, as |x | → ∞, 0 ≤ t ≤ T .
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In this case, the boundary condition (4.21) is satisfied.
Let V (�) = H1

ωα,γ
(�) as in the last subsection, and v ∈ V (�). By multiplying the first

equation of (4.19) by v(x)ωα,γ (x) and integrating the resulting equality by parts over the
interval �, we obtain the weak formulation of problem (4.19) with the boundary condition
(4.21). It is to find the solution U ∈ L∞(0, T ; L2

ωα,γ
(�)) ∩ L2(0, T ; V (�)) such that

⎧⎨
⎩

(∂tU (t) − aU (t) + aU 2(t), v)ωα,γ ,� + (∂xU (t), ∂x (vωα,γ ))�
= ( f (t), v)ωα,γ ,�, ∀ v ∈ V (�), 0 < t ≤ T,

U (x, 0) = U0(x), x ∈ �.

(4.22)

IfU0 ∈ L2
ωα,γ

(�) and f ∈ L2(0, T ; L2
ωα,γ

(�)), then problem (4.22) admits a unique solution.

Let VN (�) = V (�) ∩ Q̂α,β,γ

N (�) as before. The spectral scheme for solving problem
(4.22) is to seek the numerical solution uN (t) ∈ VN (�) for all 0 ≤ t ≤ T , such that

⎧⎪⎨
⎪⎩

(
∂t uN (t) − auN (t) + au2N (t), φ

)
ωα,γ ,�

+ (∂xuN (t), ∂x (φωα,γ ))�

= ( f (t), φ)ωα,γ ,�, ∀ φ ∈ VN (�), 0 < t ≤ T,

uN (x, 0) = P̂N ,α,β,γ,�U0(x) or P̂1
N ,α,β,γ,�U0(x), x ∈ �.

(4.23)

We now deal with the convergence of scheme (4.23). Let UN = P̂1
N ,α,β,γ,�U . By virtue

of (3.11) and (4.3), we have from (4.22) that
(
∂tUN (t) − aUN (t) + aU2

N (t), φ
)

ωα,γ ,�
+ (∂xUN (t), ∂xφ)ωα,γ ,� + (∂xUN (t), φGα,γ )ωα,γ ,�

+
4∑
j=1

G j (t, φ) = ( f (t), φ)ωα,γ ,�, ∀ φ ∈ VN (�), 0 < t ≤ T, (4.24)

where

G1(t, φ) = (∂tU (t) − ∂tUN (t), φ)ωα,γ ,�,

G2(t, φ) = (a + 1)(UN (t) −U (t), φ)ωα,γ ,�,

G3(t, φ) = (∂xU (t) − ∂xUN (t), φGα,γ )ωα,γ ,�,

G4(t, φ) = a(U 2(t) −U 2
N (t), φ)ωα,γ ,�.

Further, we set ŨN = uN −UN . By subtracting (4.24) from (4.23), we obtain
⎧⎪⎪⎨
⎪⎪⎩

(∂t ŨN (t) − aŨN (t), φ)ωα,γ ,� + (∂xŨN (t), ∂xφ)ωα,γ ,�

=
∑2

j=1
Fj (t, φ) +

∑4

j=1
G j (t, φ), ∀φ ∈ VN (�), t ∈ (0, T ],

ŨN (x, 0) = P̂N ,α,β,γ,�U0(x) − P̂1
N ,α,β,γ,�U0(x) or 0, x ∈ �̄,

(4.25)

with

F1(t, φ) = −a(2UN (t)ŨN (t) + Ũ 2
N (t), φ)ωα,γ ,�,

F2(t, φ) = −(∂xŨN (t), φGα,γ )ωα,γ ,�.

Taking φ = 2ŨN (t) in (4.25), we obtain

∂t‖ŨN (t)‖2ωα,γ ,� + 2‖∂xŨN (t)‖2ωα,γ ,� − 2a‖ŨN (t)‖2ωα,γ ,�
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= 2
2∑
j=1

Fj (t, ŨN (t)) + 2
4∑
j=1

G j (t, ŨN (t)). (4.26)

We are going to estimate the right side of the above equality. Firstly, we use the Cauchy
inequality, (3.23) and (3.12) to derive that

2|F1(t, ŨN (t))|
= 2a|2(U (t), Ũ 2

N (t))ωα,γ ,� + 2(UN (t) −U (t), Ũ 2
N (t))ωα,γ ,� + (ŨN (t), Ũ 2

N (t))ωα,γ ,�|
≤ 4a‖U (t)‖L∞(�)‖ŨN (t)‖2ωα,γ ,� + 4||UN (t) −U (t)||ωα,γ ,�||ŨN (t)||2L4

ωα,γ
(�)

+ 4||ŨN (t)||ωα,γ ,�||ŨN (t)||2L4
ωα,γ

(�)

≤ 4a‖U (t)‖L∞(�)‖ŨN (t)‖2ωα,γ ,� + caξ2α,γ β
3
2 N− 1

12 ‖F−1
α,γU (t)‖H2

A,β (�)‖ŨN (t)‖2ωα,γ ,�

+ caξ2α,γ β
1
2 N

5
12 ‖ŨN (t)‖3ωα,γ ,�. (4.27)

Next, by virtue of (4.4), we have

2|F2(t, ŨN (t))| ≤ ‖∂xŨN (t)‖2ωα,γ ,� + c2α,γ ‖ŨN (t)‖2ωα,γ ,�. (4.28)

Thirdly, we use the Cauchy inequality and (3.12) to obtain

2

∣∣∣∣∣∣
3∑
j=1

G j (t, ŨN (t))

∣∣∣∣∣∣ ≤ ‖ŨN (t)‖2ωα,γ ,� + c(β2N )1−r (‖F−1
α,γ ∂tU (t)‖2Hr

A,β (�)

+ (a2 + c2α,γ + 1)‖F−1
α,γU (t)‖2Hr

A,β (�)). (4.29)

Furthermore, with the aid of the Hölder inequality, (3.23) and (3.12), we verify that

2|G4(t, ŨN (t))|
≤ 2a‖U (t) −UN (t)‖ωα,γ ,�(‖U (t)‖L∞(�)‖ŨN (t)‖ωα,γ ,� + ‖UN (t)‖L4

ωα,γ
(�)‖ŨN (t)‖L4

ωα,γ
(�))

≤ 2a‖U (t) −UN (t)‖ωα,γ ,�‖ŨN (t)‖ωα,γ ,�(‖U (t)‖L∞(�) + cξ2α,γ β
1
2 N

5
12 ‖UN (t)‖ωα,γ ,�)

≤ 2a‖U (t) −UN (t)‖ωα,γ ,�‖ŨN (t)‖ωα,γ ,�(‖U (t)‖L∞(�) + cξ2α,γ β
1
2 N

5
12 (‖U (t)‖ωα,γ ,�

+ ‖U (t) −UN (t)‖ωα,γ ,�))

≤ ‖ŨN (t)‖2ωα,γ ,� + 4a2‖U (t) −UN (t)‖2ωα,γ ,�(‖U (t)‖L∞(�) + cξ2α,γ β
1
2 N

5
12 (‖U (t)‖ωα,γ ,�

+ ‖U (t) −UN (t)‖ωα,γ ,�))2

≤ ‖ŨN (t)‖2ωα,γ ,� + ca2β2−2r N
11−6r

6 ‖F−1
α,γU (t)‖2Hr

A,β (�)
(N− 5

6 ‖U (t)‖2L∞(�)

+ ξ4α,γ β(‖F−1
α,γU (t)‖2

H1
A,β (�)

+ ‖U (t)‖2ωα,γ ,�)).

(4.30)

For notational convenience, we set

E(ŨN , t) = ‖ŨN (t)‖2ωα,γ ,� +
∫ t

0
‖∂xŨN (s)‖2ωα,γ ,�ds,

d(U ) = 2a + c2α,γ + 2 + 4a max
0≤t≤T

‖U (t)‖L∞(�) + caξ2α,γ β
3
2 max
0≤t≤T

‖F−1
α,γU (t)‖H2

A,β (�),

Rr (U, t) =
∥∥∥F−1

α,γ ∂tU (t)
∥∥∥2
Hr
A,β (�)

+ (a2 + c2α,γ + 1)
∥∥∥F−1

α,γU (t)
∥∥∥2
Hr
A,β (�)

+ a2‖U (t)‖2L∞(�)

+ a2ξ4α,γ β

(∥∥∥F−1
α,γU (t)

∥∥∥2
H1
A,β (�)

+ ‖U (t)‖2ωα,γ ,�

)
.
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In addition,

ρ(U0) =
{ ‖F−1

α,γU0‖2Hr
A,β (�)

, if uN (x, 0) = P̂N ,α,β,γ,�U0(x),

0, if uN (x, 0) = P̂1
N ,α,β,γ,�U0(x).

Thanks to (3.8), we have

‖ŨN (0)‖2ωα,γ ,� ≤ cβ2−2r N 1−rρ(U0). (4.31)

By substituting (4.27)-(4.30) into (4.26), integrating the result with respect to t , and using
(4.31), we obtain that

E(ŨN , t) ≤
∫ t

0
(d(U )E(ŨN , s) + caξ2α,γ β

1
2 N

5
12 E

3
2 (ŨN , s))ds

+ cβ2−2r N
11−6r

6

∫ t

0
Rr (U, s)ds + cβ2N 1−rρ(U0). (4.32)

Proposition 4.2 (cf. [12]). We suppose that

(i) Z(t) is a non-negative function of t , and b1, b2 and D are non-negative constants,
(ii) D ≤ 1

b22
e−(b1+1)t1 for certain t1 > 0,

(iii) for all t ≤ t1,

Z(t) ≤
∫ t

0
(b1Z(s) + b2Z

3
2 (s))ds + D.

Then for all 0 ≤ t ≤ t1,

Z(t) ≤ De(b1+1)t .

Now, let b1 = d(U ), b2 = caξ2α,γ β
1
2 N

5
12 , and

D = cβ2−2r N
11−6r

6

(∫ t

0
Rr (U, s)ds + N− 5

6 ρ(U0)

)
.

If integer r ≥ 3 and N is suitably big, then D ≤ 1
b22
e−(b1+1)T . Therefore, we use (4.32) and

Proposition 4.2 to verify that for all 0 ≤ t ≤ T,

E(ŨN , t) ≤ cβ2−2r N
11−6r

6 e(d(U )+1)t
(∫ t

0
Rr (U, s)ds + N− 5

6 ρ(U0)

)
, (4.33)

provided that the norms involved at the right side of the above inequality are finite. Finally,
the combination of (4.33) and (3.12) leads to that

‖U (t) − uN (t)‖2ωα,γ
+

∫ t

0
‖∂x (U (s) − uN (s))‖2ωα,γ

ds

≤ cβ2−2r N
11−6r

6

(
e(d(U )+1)t

(∫ t

0
Rr (U, s

)
ds + N− 5

6 ρ(U0)

)

+ N− 5
6

(∫ t

0

∥∥∥F−1
α,γU (s)

∥∥∥2
Hr
A,β (�)

ds +
∥∥∥F−1

α,γU (t)
∥∥∥2
Hr
A,β (�)

)

)
. (4.34)
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We next describe the implementation for the spectral scheme (4.23). Let φl(x) be the same
as in the last subsection. We expand the numerical solution as

uN (x, t) =
N∑
l=0

ûl(t)φl(x).

Inserting the above expression into (4.23) with φ = φk(x), we obtain

N∑
l=0

(φl , φk)ωα,γ ,�∂t ûl(t) − a
N∑
l=0

(φl , φk)ωα,γ ,�ûl(t) +
N∑
l=0

(∂xφl , ∂x (φkωα,γ ))�ûl(t)

= ( f (t), φk)ωα,γ ,� − a
(
u2N (t), φk

)
ωα,γ ,�

, 0 ≤ k ≤ N . (4.35)

We can rewrite the system (4.35) as a compact matrix form. To do this, we introduce the
matrices A = (ak,l)0≤k,l≤N and B = (bk,l)0≤k,l≤N , with the following entries:

ak,l = (φl , φk)ωα,γ ,�, bk,l = (∂xφl , ∂x (φkωα,γ ))�.

Let û(t) = (û0(t), û1(t), · · ·, ûN (t))T and F(t) = (F0(t), F1(t), · · ·, FN (t))T , with

Fk(t) = ( f (t), φk)ωγ ,� − a
(
u2N (t), φk

)
ωα,γ ,�

.

Then, the system (4.35) becomes

A∂t û(t) + (B − aA)û(t) = F(t).

Wenow consider the Fisher equation (4.19) with a = 0.96 and f (x, t) ≡ 0. For fixedness,
we focus on the solutions decaying to zero as x → −∞, and tending to 1 as x → ∞. In this
case, we make the transformation

U (x, t) = V (x, t) + 2

π
arctan

(
1

2
ex

)
.

Inserting the above expression into (4.19), we obtain the reformed equation for the unknown
function V (x, t), vanishing at the infinity. Accordingly, we derive a spectral scheme similar
to (4.23). Meanwhile, we adopt the standard explicit fourth-order Runge–Kutta method in
time, with the step size τ . The corresponding numerical solution is denoted by vN ,τ (x, t).
The numerical solution of the original problem is given by

uN ,τ (x, t) = vN ,τ (x, t) + 2

π
arctan

(
1

2
ex

)
.

In actual computation, we take the test function (4.20) with ε = −1 and A = B = 1. We
measure the numerical accuracy by the global weighted errors

EN ,τ,gw(t) =
⎛
⎝ N∑

j=1

(
U

(
σ̂

β
N , j , t

)
− uN

(
σ̂

β
N , j , t

))2
ω̂

α,β,γ

N , j

⎞
⎠

1
2

,

and the point-wise errors

EN ,τ,pw(t) = max
0≤ j≤N

∣∣∣U
(
σ̂

β
N , j , t

)
− uN ,τ

(
σ̂

β
N , j , t

)∣∣∣ .
In Fig. 2, we plot the values of the global weighted errors and the point-wise errors at

t = 1, with the parameters β = 0.5 and α = γ = 0, the step size τ = 0.01 vs
√
N . They

indicate that the numerical errors decay as N increases.
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Fig. 2 Comparison of numerical
errors with τ = 0.01 and β = 0.5
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5 Concluding Remarks

In this paper, we introduced the orthogonal system of new generalized Hermite functions
with the weight function (1 + 2

π
arctan x)−2α(1 − 2

π
arctan x)−2γ , α and γ being any real

numbers.We established the basic results on the corresponding generalizedHermite orthogo-
nal approximation and the related Hermite–Gauss interpolation. By adjusting the parameters
α and γ suitably, such approximations might simulate the different asymptotic behaviors
of approximated functions at infinities reasonably, and so play important roles in the spec-
tral and pseudospectral methods for various problems with different asymptotic behaviors
at infinities. As examples of applications, we provided the spectral schemes for a linear
problem and the Fisher equation, and proved their spectral accuracy in space. The numerical
results indicated the high efficiency of the suggested algorithms, and coincided well with the
analysis. The main idea, the approximation results and the techniques developed in this work
are also applicable to other problems defined on the whole line and the related unbounded
domains in multiple dimensions.

The authors thank Professor Wang Zhong-qing very much for the helpful discussions.
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