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JACOBI AND LAGUERRE QUASI-ORTHOGONAL

APPROXIMATIONS AND RELATED INTERPOLATIONS

GUO BEN-YU, SUN TAO, AND ZHANG CHAO

Abstract. In this paper, we investigate Jacobi quasi-orthogonal approxima-
tion and generalized Jacobi-Gauss-Lobatto interpolation. We also propose La-
guerre quasi-orthogonal approximation and generalized Laguerre-Gauss-Radau
interpolation. A series of sharp results on these approximations are estab-
lished, which are applicable to spectral and pseudospectral methods for mixed
nonhomogeneous boundary value problems of high order.

1. Introduction

The Jacobi approximation plays an important role in mathematical analysis and
its applications. Especially, the Legendre and Chebyshev approximations have been
used widely for spectral and pseudospectral methods of differential equations; see
[3, 5, 6, 10, 11, 12, 29] and the references therein. Some authors developed the
Jacobi spectral and pseudospectral methods for singular differential equations, and
some problems defined on unbounded domains and axisymmetric domains; see, e.g.,
[2, 13, 14]. We mostly considered second order problems. But, it is also important
to solve high order problems arising in science and engineering numerically; see
[1, 4, 8, 15] and the references therein. Guo, Shen and Wang [18, 19] proposed
the generalized Jacobi approximation, which enlarged applications of the spectral
method. In actual computation, the pseudospectral method is more preferrable. Its
mathematical foundation is the related interpolation. Canuto and Quarteroni first
studied systematically the Legendre-Gauss-Lobatto and Chebyshev-Gauss-Lobatto
interpolations in the standard Sobolev space; see [6]. Bernardi and Maday [3]
derived some precise results on the generalized Legendre-Gauss-Lobatto interpola-
tion. Guo and Wang [21], and Guo and Zhang [27] studied the Jacobi-Gauss type
interpolations. However, it is not easy to design proper spectral and pseudospectral
methods for high order problems with mixed nonhomogeneous boundary conditions.

On the other hand, more and more attention has been paid recently to numerical
methods for unbounded domains. For problems defined on the half-line and related
problems, we often used the Laguerre spectral and pseudospectral methods; see
[17, 23, 26, 28, 30, 31, 32, 33, 36] and the references therein. They are also applicable
to certain exterior problems; see, e.g., [7, 20, 24, 25]. Whereas, the existing results
on the Laguerre approximation are not optimal. Moreover, it is not easy to deal
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with mixed nonhomogeneous boundary value problems of high order, defined on
unbounded domains.

In this work, we investigate the Jacobi and Laguerre quasi-orthogonal approxi-
mations and the related interpolations. In the next section, we introduce the Ja-
cobi quasi-orthogonal approximation and establish the basic approximation results.
In Section 3, we propose a new generalized Jacobi-Gauss-Lobatto interpolation.
In Section 4, we introduce a new family of generalized Laguerre functions which
are mutually orthogonal with the weight xαe−βx, α being any real number and
β > 0. Then, we focus on the special and mostly useful case with integer α ≤ −1,
and derive the optimal approximation result. We also develop the generalized La-
guerre quasi-orthogonal approximation. In Section 5, we consider the generalized
Laguerre-Gauss-Radau interpolation.

The new approximations proposed in this paper are appropriate for spectral and
spectral element methods, and pseudospectral and pseudospectral element methods,
for various mixed nonhomogeneous boundary value problems of high order. The
approximation results obtained in this work generalize and improve the existing
results essentially, and provide new and powerful tools for numerical analysis of
high order methods.

2. Jacobi quasi-orthogonal approximation

2.1. Generalized Jacobi functions. Let Λ = {x | |x| < 1} and χ(x) be a certain
weight function. For any integer r ≥ 0, we define the weighted Sobolev space Hr

χ(Λ)
as usual, with the inner product (u, v)r,χ, the semi-norm |v|r,χ and the norm ‖v‖r,χ.
In particular, we denote by (u, v)χ and ‖v‖χ the inner product and the norm of
L2
χ(Λ), respectively. The space Hr

0,χ(Λ) stands for the closure in Hr
χ(Λ) of the set

D(Λ) consisting of all infinitely differentiable functions with compact support in Λ.
We omit the subscript χ in the notation, whenever χ(x) ≡ 1.

In this work, we shall use a specific family of generalized Jacobi polynomials. Let

χ(σ,λ)(x) = (1−x)σ(1+x)λ, σ, λ > −1, and let J
(σ,λ)
l (x) be the Jacobi polynomials

of degree l. For any integers m and n, we set

(2.1) Y
(m,n)
l (x) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
(1− x)m(1 + x)nJ

(m,n)
l−m−n(x), m, n ≥ 1, l ≥ m+ n,

(1− x)mJ
(m,−n)
l−m (x), m ≥ 1, n < 1, l ≥ m,

(1 + x)nJ
(−m,n)
l−n (x), m < 1, n ≥ 1, l ≥ n,

J
(−m,−n)
l (x), m, n < 1, l ≥ 0.

According to (2.25) and (2.26) of [19], for integers m,n, k ≥ 1 and n ≤ m, we have
that

(2.2) ∂k
xY

(m,n)
l (x) = E

(m,n)
k,l Y

(m−k,n−k)
l−k (x), l ≥ max(m+ n, k),

where

E
(m,n)
k,l =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(−2)k
k∏

i=1

(l −m− n+ i), k ≤ n ≤ m,

(−1)k2n
( n∏

i=1

(l −m− n+ i)
)( k−n−1∏

i=0

(l − n− i)
)
, n < k ≤ m,

(−1)m
Γ(l + k −m− n+ 1)

2k−m−nΓ(l − n+ 1)

( n∏
i=1

(l −m− n+ i)
)(m−n−1∏

i=0

(l − n− i)
)
,

n < m ≤ k.
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Meanwhile, for integers m,n, k ≥ 1 and m ≤ n, we get

(2.3) ∂k
xY

(m,n)
l (x) = (−1)μE

(n,m)
k,l Y

(m−k,n−k)
l−k (x),

where μ = 0, k, n for the cases k ≤ m ≤ n, m < k ≤ n, andm < n ≤ k, respectively.

The set of all polynomials Y
(m,n)
l (x) is a complete L2

χ(−m,−n)(Λ)-orthogonal sys-

tem, namely (see (2.9) of [19]),

(2.4)

∫
Λ

Y
(m,n)
l (x)Y

(m,n)
l′ (x)χ(−m,−n)(x)dx = γ

(m,n)
l δl,l′ ,

where δl,l′ is the Kronecker symbol, and
(2.5)

γ
(m,n)
l =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

2m+n+1Γ(l −m+ 1)Γ(l − n+ 1)

(2l −m− n+ 1)Γ(l + 1)Γ(l −m− n+ 1)
, m, n ≥ 1, l ≥ m+ n,

2m−n+1Γ(l + 1)Γ(l −m− n+ 1)

(2l −m− n+ 1)Γ(l −m+ 1)Γ(l− n+ 1)
, m ≥ 1, n < 1, l ≥ m,

2−m+n+1Γ(l + 1)Γ(l −m− n+ 1)

(2l −m− n+ 1)Γ(l −m+ 1)Γ(l− n+ 1)
, m < 1, n ≥ 1, l ≥ n,

2−m−n+1Γ(l −m+ 1)Γ(l − n+ 1)

(2l −m− n+ 1)Γ(l + 1)Γ(l −m− n+ 1)
, m, n < 1, l ≥ 0.

Let lm,n = m + n,m, n, 0 for the cases m,n ≥ 1, m ≥ 1 and n < 1, m < 1 and
n ≥ 1, and m,n < 1, respectively. Then, for any v ∈ L2

χ(−m,−n)(Λ),

(2.6) v(x) =
∞∑

l=lm,n

v̂
(m,n)
l Y

(m,n)
l (x)

where

v̂
(m,n)
l =

1

γ
(m,n)
l

∫
Λ

v(x)Y
(m,n)
l (x)χ(−m,−n)(x)dx.

Furthermore, for m,n ≥ 1, a combination of (2.2)–(2.4) leads to the following
equality (cf. the proof of Theorem 2.2 of [19]):

(2.7)

∫
Λ

∂k
xY

(m,n)
l (x)∂k

xY
(m,n)
l′ (x)χ(−m+k,−n+k)(x)dx = (E

(m,n)
k,l )2γ

(m−k,n−k)
l−k δl,l′ .

Now, for any positive integer N , PN (Λ) stands for the set of all algebraic poly-
nomials of degree at most N. Next, for m,n ≥ 1,

P0
N,m,n(Λ) = {φ ∈ PN (Λ) | ∂k

xφ(−1) = 0 for 0 ≤ k ≤ n− 1 and

∂k
xφ(1) = 0 for 0 ≤ k ≤ m− 1}.

We also introduce the finite dimensional set

Q(m,n)
N (Λ) = span{ Y

(m,n)
l (x), lm,n ≤ l ≤ N}.

Obviously, Q(m,n)
N (Λ) = P0

N,m,n(Λ) whenever m,n ≥ 1.
Throughout this paper, we denote by c a generic positive constant independent

of any function and N . We have an inverse inequality stated below.

Lemma 2.1. For any φ ∈ Q(m,n)
N (Λ), integers m,n ≥ 1 and N ≥ max(m+ n, k),

we get

‖∂k
xφ‖χ(−m+k,−n+k) ≤ cNk‖φ‖χ(−m,−n) .
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Proof. According to (2.4), we have

(2.8) ||φ||2χ(−m,−n) =

N∑
l=m+n

(φ̂
(m,n)
l )2γ

(m,n)
l .

Without any loss of generality, we assume m ≥ n. Then by virtue of (2.7), we get

(2.9) ||∂k
xφ||2χ(−m+k,−n+k) =

N∑
l=max (m+n,k)

(E
(m,n)
k,l )2(φ̂

(m,n)
l )2γ

(m−k,n−k)
l−k .

Clearly, (2.2) and (2.3) imply E
(m,n)
k,l ∼ lk for large l. By the Stirling formula,

(2.10) Γ(s+ 1) =
√
2πssse−s(1 +O(s−

1
5 )), s 	 1.

Thus, a direct calculation shows that γ
(m,n)
l ∼ l−1. Thereby, we use (2.8) and (2.9)

to obtain

||∂k
xφ||2χ(−m+k,−n+k) ≤ max

max(m+n,k)≤l≤N

γ
(m−k,n−k)
l−k (E

(m,n)
k,l )2

γ
(m,n)
l

N∑
l=m+n

(φ̂
(m,n)
l )2γ

(m,n)
l

≤ cN2k||φ||2χ(−m,−n) .

This ends the proof. �

2.2. Generalized Jacobi orthogonal approximation. Next, we recall the gen-
eralized Jacobi orthogonal approximation. The projection PN,m,n : L2

χ(−m,−n)(Λ) →
Q(m,n)

N (Λ) is defined by

(PN,m,nv − v, φ)χ(−m,−n) = 0, ∀φ ∈ Q(m,n)
N (Λ).

As a special case of (2.39) of [19] (also see (1.8) of [18]), we have the following
result.

Lemma 2.2. If v ∈ L2
χ(−m,−n)(Λ), ∂r

xv ∈ L2
χ(−m+r,−n+r)(Λ), integers m,n, r ≥

1, N ≥ m+ n and 0 ≤ k ≤ r ≤ N + 1, then

||∂k
x(v − PN,m,nv)||χ(−m+k,−n+k) ≤ cNk−r||∂r

xv||χ(−m+r,−n+r) .

For numerical solutions of high order differential equations, we need other or-
thogonal projections. For this purpose, we introduce the space

Hr
m,n,A(Λ) = {v | v is measurable on Λ and ||v||Hr

m,n,A
< ∞},

equipped with the following semi-norm and norm,

|v|Hr
m,n,A

= ||∂r
xv||χ(−m+r,−n+r) , ||v||Hr

m,n,A
= (

r∑
k=0

|v|2Hk
m,n,A

)
1
2 .

If v ∈ Hr
m,n,A(Λ),m, n ≥ 1 and r ≥ max(m,n), then there exist finite traces

∂k
xv(−1) for 0 ≤ k ≤ n− 1, and ∂k

xv(1) for 0 ≤ k ≤ m − 1. Accordingly, we define
the space

Hr
0,m,n,A(Λ) = { v ∈ Hr

m,n,A(Λ) | ∂k
xv(−1) = 0 for 0 ≤ k ≤ n− 1, and

∂k
xv(1) = 0 for 0 ≤ k ≤ m− 1}.
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For integers max(m,n) ≤ μ ≤ m + n, the projection Pμ,0
N,m,n : Hμ

0,m,n,A(Λ) →
Q(m,n)

N (Λ) is defined by

(2.11) (∂μ
x (v − Pμ,0

N,m,nv), ∂
μ
xφ)χ(−m+μ,−n+μ) = 0, ∀φ ∈ Q(m,n)

N (Λ).

There is a close relation between Pμ,0
N,m,nv and PN,m,nv. To show this, let v ∈

Hμ
0,m,n,A(Λ) and v̂

(m,n)
l be the same as in (2.9). Meanwhile,

Pμ,0
N,m,nv(x) =

N∑
l=m+n

a
(m,n)
l Y

(m,n)
l (x).

Without any loss of generality, we assume 1 ≤ n ≤ m. With the aid of (2.2), a
direct calculation shows

∂μ
x (v(x)− Pμ,0

N,m,nv(x)) =

N∑
l=max(m+n,μ)

E
(m,n)
μ,l (v̂

(m,n)
l − a

(m,n)
l )Y

(m−μ,n−μ)
l−μ (x)

+
∞∑

l=N+1

E
(m,n)
μ,l v̂

(m,n)
l Y

(m−μ,n−μ)
l−μ (x).

(2.12)

We now put φ(x) = Y
(m,n)
l′ (x), m + n ≤ l′ ≤ N, in (2.11). Then, we use (2.2),

(2.4) and (2.12) to obtain

(E
(m,n)
μ,l )2γ

(m−μ,n−μ)
l−μ (v̂

(m,n)
l − a

(m,n)
l )2 = 0, m+ n ≤ l ≤ N.

This means

(2.13) Pμ,0
N,m,nv = PN,m,nv, ∀v ∈ Hμ

0,m,n,A(Λ).

The above matter with Lemma 2.2 leads to the following conclusion.

Lemma 2.3. If v∈Hμ
0,m,n,A(Λ), ∂

r
xv∈L2

χ(−m+r,−n+r)(Λ), integers m,n, r ≥ 1, N ≥
m+ n, 0 ≤ k ≤ r ≤ N + 1 and max(m,n, k) ≤ μ ≤ m+ n, then

||∂k
x(v − Pμ,0

N,m,nv)||χ(−m+k,−n+k) ≤ cNk−r||∂r
xv||χ(−m+r,−n+r) .

The above result is applicable to numerical solutions of high order problems with
homogeneous Dirichlet boundary condition. The specific case with μ = m = n > 1
was considered in [18].

2.3. Jacobi quasi-orthogonal approximation. For nonhomogeneous Dirichlet,
Neumann and mixed boundary conditions, as well as for spectral element methods
of high order equations in which the numerical solutions and some of their deriva-
tives should match properly on all common boundaries of adjacent subdomains, we
need certain quasi-orthogonal approximations.

We introduce the following polynomials of degree m+ n− 1,

q−m,n,j(x) =
1

2mj!
(1− x)m

n−1−j∑
l=0

(m+ l − 1)!

2ll!(m− 1)!
(1 + x)l+j ,(2.14)

q+m,n,j(x) =
(−1)j

2nj!
(1 + x)n

m−1−j∑
l=0

(n+ l − 1)!

2ll!(n− 1)!
(1− x)l+j .(2.15)
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It can be checked that (cf. Theorem 3.1 of [35])
(2.16)

∂k
xq

−
m,n,j(−1) = δk,j , ∂l

xq
−
m,n,j(1) = 0, 0 ≤ j, k ≤ n− 1, 0 ≤ l ≤ m− 1,

∂l
xq

+
m,n,j(−1) = 0, ∂k

xq
+
m,n,j(1) = δk,j , 0 ≤ j, k ≤ m− 1, 0 ≤ l ≤ n− 1.

Now, for any v ∈ Hr
m,n,A(Λ) and r ≥ max(m,n), we set

(2.17) vm,n,b(x) =

n−1∑
j=0

∂j
xv(−1)q−m,n,j(x) +

m−1∑
j=0

∂j
xv(1)q

+
m,n,j(x).

Furthermore, let ṽ(x) = v(x) − vm,n,b(x). Evidently, ṽ ∈ Hr
0,m,n,A(Λ). Therefore,

there exists the orthogonal projection Pμ,0
N,m,nṽ ∈ Q(m,n)

N (Λ). Following the same

idea of [23, 25], we define the Jacobi quasi-orthogonal projection as

(2.18) Pμ
N,m,nv(x) = Pμ,0

N,m,nṽ(x) + vm,n,b(x) ∈ PN (Λ).

By (2.17), (2.18), and the definition of Pμ,0
N,m,n, we derive that

(2.19)
∂k
xP

μ
N,m,nv(−1) = ∂k

xv(−1), for 0 ≤ k ≤ n− 1,

∂k
xP

μ
N,m,nv(1) = ∂k

xv(1), for 0 ≤ k ≤ m− 1.

We now turn to the error estimate of the above projection. Obviously,

Pμ
N,m,nv(x)− v(x) = Pμ,0

N,m,nṽ(x)− ṽ(x).

Thus, we use Lemma 2.3 to obtain the following result.

Theorem 2.1. If v ∈ H
max(m,n)
m,n,A (Λ), ∂r

xv ∈ L2
χ(−m+r,−n+r)(Λ), integers m,n, r ≥

1, N ≥ m+ n, 0 ≤ k ≤ r ≤ N + 1 and max(m,n, k) ≤ μ ≤ m+ n, then

(2.20)
||∂k

x(P
μ
N,m,nv − v)||χ(−m+k,−n+k) = ||∂k

x(P
μ,0
N,m,nṽ − ṽ)||χ(−m+k,−n+k)

≤ cNk−r(||∂r
xv||χ(−m+r,−n+r) + ||∂r

xvm,n,b||χ(−m+r,−n+r)).

Clearly, ∂r
xvm,n,b(x) = 0 for r ≥ m+ n. Therefore, the inequality (2.20) implies

(2.21)
||∂k

x(P
μ
N,m,nv − v)||χ(−m+k,−n+k)

≤ cNk−r||∂r
xv||χ(−m+r,−n+r) , for r ≥ m+ n.

Next, we consider the case with max(m,n) ≤ r ≤ m + n − 1. Thanks to trace
theorem, we get

(2.22)

||∂r
xvm,n,b||χ(−m+r,−n+r) ≤ c(

n−1∑
j=0

|∂j
xv(−1)|

+
m−1∑
j=0

|∂j
xv(1)|) ≤ c||v||Hmax(m,n)(Λ).

This, along with (2.20), leads to

(2.23)
||∂k

x(P
μ
N,m,nv − v)||χ(−m+k,−n+k)

≤ cNk−r(||∂r
xv||χ(−m+r,−n+r) + ||v||Hmax(m,n)(Λ)).

It is noted that in many practical cases, the error estimate (2.21) is also valid for
r ≤ m+ n− 1. Indeed, it has been verified that (see the Appendix of this paper)

(2.24)
||∂k

x(P
μ
N,m,nv − v)||χ(−m+k,−n+k) ≤ cNk−r||∂r

xv||χ(−m+r,−n+r) ,

for 1 ≤ m,n ≤ 4, max(m,n) ≤ r ≤ m+ n− 1.
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Remark 2.1. The special cases with μ = m = n = 1, 2 with their applications to
second and fourth order problems, were considered in [16, 24, 25, 27]. Bernardi and
Maday considered the same projection with μ = m = n, denoted by π̃m

N . By (6.22)
of [3], ‖v − π̃m

N v‖Hm(Λ) ≤ cNm−r‖v‖Hr(Λ). Clearly, (2.21), (2.23), and (2.24) give
more general and better results.

Remark 2.2. The projection Pμ
N,σ,λv possesses an interesting property, playing an

important role in Petrov-Galerkin spectral method of high and odd order problems.

In fact, for any φ ∈ Q(λ,λ)
N−σ+λ(Λ), we have ∂λ

xφ ∈ PN−σ(Λ). Accordingly, qφ :=

χ(σ,λ)∂σ+λ
x φ ∈ Q(σ,λ)

N (Λ). For any v ∈ H
max(σ,λ)
σ,λ,A (Λ), let ṽ(x) = v(x) − vσ,λ,b(x) ∈

H
max(σ,λ)
0,σ,λ,A (Λ). Then, we use (2.18), an integration by parts, (2.13) and the definition

of PN,σ,λṽ successfully, to derive that for any φ ∈ Q(λ,λ)
N−σ+λ(Λ) and max(σ, λ) ≤ μ ≤

m+ n, we get
(2.25)

(∂σ
x (P

μ
N,σ,λv − v), ∂λ

xφ) = (∂σ
x (P

μ,0
N,σ,λṽ − ṽ), ∂λ

xφ)

= (−1)σ(Pμ,0
N,σ,λṽ − ṽ, qφ)χ(−σ,−λ) = (−1)σ(PN,σ,λṽ − ṽ, qφ)χ(−σ,−λ) = 0.

3. Generalized Jacobi-Gauss-Lobatto interpolation

In this section, we investigate the generalized Jacobi-Gauss-Lobatto interpola-
tion.

Denote by ζ
(σ,λ)
G,N,j the N + 1 distinct zeros of polynomials J

(σ,λ)
N+1 (x), arranged in

decreasing order. As was shown in [34], there exist the corresponding Christoffel

numbers ω
(σ,λ)
G,N,j , 0 ≤ j ≤ N , such that

(3.1)

∫
Λ

φ(x)χ(σ,λ)(x)dx =
N∑
j=0

φ(ζ
(σ,λ)
G,N,j)ω

(σ,λ)
G,N,j , ∀φ ∈ P2N+1(Λ).

By (15.3.10) of [34], we have

(3.2) ω
(σ,λ)
G,N,j ∼

2σ+λ+1π

N + 1
(1− ζ

(σ,λ)
G,N,j)

σ+ 1
2 (1 + ζ

(σ,λ)
G,N,j)

λ+ 1
2 .

We define the nodes and weights of the generalized Jacobi-Gauss-Lobatto interpo-
lation:

(3.3)

ζ
(m,n)
N,j = ζ

(m,n)
G,N−m−n,j ,

ω
(m,n)
N,j = ω

(m,n)
G,N−m−n,j(1− ζ

(m,n)
G,N−m−n,j)

−2m(1 + ζ
(m,n)
G,N−m−n,j)

−2n,

m, n ≥ 0, 0 ≤ j ≤ N −m− n.

Thanks to (3.2) and (3.3), we have

(3.4) ω
(m,n)
N,j ∼ 2m+n+1π

N −m− n+ 1
(1− ζ

(m,n)
N,j )−m+ 1

2 (1 + ζ
(m,n)
N,j )−n+ 1

2 .

Next, we introduce the discrete inner product and norm as follows:

(u, v)N,m,n =

N−m−n∑
j=0

u(ζ
(m,n)
N,j )v(ζ

(m,n)
N,j )ω

(m,n)
N,j , ‖v‖N,m,n = (v, v)

1
2

N,m,n.

For any φ ∈ Q(m,n)
N (Λ) and ψ ∈ Q(m,n)

N+1 (Λ), there are qφ ∈ PN−m−n(Λ) and

qψ ∈ PN−m−n+1(Λ) such that φ(x) = χ(m,n)(x)qφ(x) and ψ(x) = χ(m,n)(x)qψ(x).

Licensed to Nanyang Technological University. Prepared on Fri Oct 19 01:33:58 EDT 2012 for download from IP 155.69.4.4.

License or copyright restrictions may apply to redistribution; see http://www.ams.org/journal-terms-of-use



420 GUO BEN-YU, SUN TAO, AND ZHANG CHAO

Clearly, qφqψ ∈ P2N−2m−2n+1(Λ). Therefore, we use (3.1) to verify that

(3.5)

(φ, ψ)χ(−m,−n) = (qφ, qψ)χ(m,n)

=

N−m−n∑
j=0

qφ(ζ
(m,n)
G,N−m−n,j)qψ(ζ

(m,n)
G,N−m−n,j)ω

(m,n)
G,N−m−n,j

=

N−m−n∑
j=0

φ(ζ
(m,n)
N,j )ψ(ζ

(m,n)
N,j )ω

(m,n)
N,j = (φ, ψ)N,m,n,

∀φ ∈ Q(m,n)
N (Λ), ψ ∈ Q(m,n)

N+1 (Λ).

For any integer r ≥ 0, we denote by Cr(Λ̄) the space consisting of all r-times
differentiable functions. Further, for integer r ≥ max(m− 1, n− 1),

Cr
0,m,n(Λ̄) = {v ∈ Cr(Λ̄) | ∂k

xv(−1) = 0 for 0 ≤ k ≤ n− 1,

∂k
xv(1) = 0 for 0 ≤ k ≤ m− 1}.

For any v ∈ C
max(m−1,n−1)
0,m,n (Λ̄) and m,n ≥ 1, the auxiliary interpolation IN,m,nv

∈ Q(m,n)
N (Λ) is determined by

(3.6) IN,m,nv(ζ
(m,n)
N,j ) = v(ζ

(m,n)
N,j ), 0 ≤ j ≤ N −m− n.

Lemma 3.1 (Stability of interpolation). For any v ∈ C
max(m−1,n−1)
0,m,n (Λ̄)∩

H1
m,n,A(Λ), integers m,n ≥ 1 and N ≥ m+ n, we get

||IN,m,nv||χ(−m,−n) ≤ c(||v||χ(−m,−n) +N−1||∂xv||χ(−m+1,−n+1)).

Proof. By virtue of (3.4) and (3.5), we deduce that

(3.7)

||IN,m,nv||2χ(−m,−n) =

N−m−n∑
j=0

v2(ζ
(m,n)
N,j )ω

(m,n)
N,j

≤ 2m+n+1π

N −m− n+ 1

N−m−n∑
j=0

v2(ζ
(m,n)
N,j )(1− ζ

(m,n)
N,j )−m+ 1

2 (1 + ζ
(m,n)
N,j )−n+ 1

2 .

Let x = cos θ, θ ∈ [0, π] and v̂(θ) = v(cos θ). By (3.3) and Theorem 8.9.1 of [34],

(3.8) θ
(m,n)
N,j = θ

(m,n)
G,N−m−n,j =

1

N −m− n+ 1
(jπ +O(1)), 0 ≤ j ≤ N −m− n,

where O(1) is bounded uniformly for all 0 ≤ j ≤ N − m − n. We set a0 =
1

N−m−n+1O(1) and a1 = 1
N−m−n+1 ((N −m − n)π + O(1)). Then θ

(m,n)
N,j ∈ Δj ⊂

[a0, a1],Δj being subintervals with the length |Δj | = O( 1
N−m−n+1 ). Therefore, by

(3.7) and (3.8),

||IN,m,nv||2χ(−m,−n) ≤ c

N

N−m−n∑
j=0

v2(θ
(m,n)
N,j )(sin

θ
(m,n)
N,j

2
)−2m+1(cos

θ
(m,n)
N,j

2
)−2n+1

≤ c

N

N−m−n∑
j=0

sup
θ∈Δj

|v̂(θ)(sin θ

2
)−m+ 1

2 (cos
θ

2
)−n+ 1

2 |2.

On the other hand, for any f ∈ H1(a, b) (see page 32 of [21]),

(3.9) max
a≤x≤b

|f(x)| ≤ 1√
b− a

‖f‖L2(a,b) +
√
b− a||∂xf‖L2(a,b).
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Therefore,

||IN,m,nv||2χ(−m,−n)

≤ c

N

N−m−n∑
j=0

(
1

|Δj |
||v̂(θ)(sin θ

2
)−m+ 1

2 (cos
θ

2
)−n+ 1

2 ||2L2(Δj)

+ |Δj |||∂θ(v̂(θ)(sin
θ

2
)−m+ 1

2 (cos
θ

2
)−n+ 1

2 )||2L2(Δj)
)

≤ c(||v̂(θ)(sin θ

2
)−m+ 1

2 (cos
θ

2
)−n+ 1

2 ||2L2(0,π)

+N−2||∂θv̂(θ)(sin
θ

2
)−m+ 1

2 (cos
θ

2
)−n+ 1

2 ||2L2(a0,a1)

+N−2||v̂(θ)(sin θ

2
)−m− 1

2 (cos
θ

2
)−n− 1

2 ||2L2(a0,a1)
)

≤ c(||v̂(θ)(sin θ

2
)−m+ 1

2 (cos
θ

2
)−n+ 1

2 ||2L2(0,π)

+N−2||∂θv̂(θ)(sin
θ

2
)−m+ 1

2 (cos
θ

2
)−n+ 1

2 ||2L2(0,π)

+N−2 max
a0≤x≤a1

1

sin2 θ
(||v̂(θ)(sin θ

2
)−m+ 1

2 (cos
θ

2
)−n+ 1

2 )||2L2(a0,a1)
)

≤ c(||v||2χ(−m,−n) +N−2||∂xv||2χ(−m+1,−n+1)).

The proof is completed. �

We are now in position to estimate the error of interpolation IN,m,nv.

Lemma 3.2. If v ∈ H
max(m,n)
0,m,n,A (Λ), ∂r

xv ∈ L2
χ(−m+r,−n+r)(Λ), integers m,n, r ≥ 1,

N ≥ m+ n and 0 ≤ k ≤ r ≤ N + 1, then

||∂k
x(IN,m,nv − v)||χ(−m+k,−n+k) ≤ cNk−r||∂r

xv||χ(−m+r,−n+r) .

Proof. IN,m,nv is meaningful. We use Lemmas 2.1 and 3.1 to deduce that

||∂k
x(IN,m,nv − PN,m,nv)||χ(−m+k,−n+k)

≤ cNk||IN,m,nv − PN,m,nv||χ(−m,−n) = cNk||IN,m,n(PN,m,nv − v)||χ(−m,−n)

≤ cNk(||PN,m,nv − v||χ(−m,−n) +N−1||∂x(PN,m,nv − v)||χ(−m+1,−n+1)).

Consequently, using Lemma 2.2 yields

||∂k
x(IN,m,nv − v)||χ(−m+k,−n+k) ≤ ||∂k

x(PN,m,nv − v)||χ(−m+k,−n+k)

+||∂k
x(IN,m,nv − PN,m,nv)||χ(−m+k,−n+k) ≤ cNk−r||∂r

xv||χ(−m+r,−n+r) .

This ends the proof. �

By virtue of (3.5) and Lemma 3.2 with k = 0, we verify that for any v ∈
C

max(m−1,n−1)
0,m,n (Λ̄) and φ ∈ Q(m,n)

N (Λ),

(3.10)
|(v, φ)N,m,n − (v, φ)χ(−m,−n) | = |(IN,m,nv − v, φ)χ(−m,−n) |

≤ cN−r||∂r
xv||χ(−m+r,−n+r) ||φ||χ(−m,−n) .

We now turn to the generalized Jacobi-Gauss-Lobatto interpolation for function
with nonhomogeneous boundary values. Let vm,n,b(x) be the same as in (2.17).

For any v ∈ C
max(m−1,n−1)
m,n (Λ̄), we set ṽ(x) = v(x) − vm,n,b(x). Evidently, ṽ ∈

C
max(m−1,n−1)
0,m,n (Λ̄). Thus, there exists the interpolation IN,m,nṽ ∈ Q(m,n)

N (Λ). Then,
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following the same idea of [27], we define the new generalized Jacobi-Gauss-Lobatto
interpolation as

(3.11) IL,N,m,nv(x) = IN,m,nṽ(x) + vm,n,b(x).

With the aid of (2.16), we assert that

(3.12)
IL,N,m,nv(ζ

(m,n)
N,j ) = v(ζ

(m,n)
N,j ), for 0 ≤ j ≤ N −m− n,

∂k
xIL,N,m,nv(−1) = ∂k

xv(−1), for 0 ≤ k ≤ n− 1,
∂k
xIL,N,m,nv(1) = ∂k

xv(1), for 0 ≤ k ≤ m− 1.

Next, we estimate the error of interpolation IL,N,m,nv. Clearly IL,N,m,nv(x) −
v(x) = IN,m,nṽ(x)− ṽ(x). Thus, Lemma 3.2 implies the following result.

Theorem 3.1. If v ∈ H
max(m,n)
m,n,A (Λ), ∂r

xv ∈ L2
χ(−m+r,−n+r) (Λ), integers m,n, r ≥

1, N ≥ m+ n and 0 ≤ k ≤ r ≤ N + 1, then

(3.13)
||∂k

x(IL,N,m,nv − v)||χ(−m+k,−n+k) = ||∂k
x(IN,m,nṽ − ṽ)||χ(−m+k,−n+k)

≤ cNk−r(||∂r
xv||χ(−m+r,−n+r) + ||∂r

xvm,n,b||χ(−m+r,−n+r)).

Following the same line as the derivations of (2.21), (2.23) and (2.24), we obtain

||∂k
x(IL,N,m,nv − v)||χ(−m+k,−n+k)(3.14)

≤ cNk−r||∂r
xv||χ(−m+r,−n+r) , for r ≥ m+ n,

||∂k
x(IL,N,m,nv − v)||χ(−m+k,−n+k) ≤ cNk−r(||∂r

xv||χ(−m+r,−n+r)(3.15)

+ ||v||Hmax(m,n)(Λ)), for max(m,n) ≤ r ≤ m+ n− 1,

||∂k
x(IL,N,m,nv − v)||χ(−m+k,−n+k) ≤ cNk−r||∂r

xv||χ(−m+r,−n+r) ,(3.16)

for 1 ≤ m,n ≤ 4, max(m,n) ≤ r ≤ m+ n− 1.

Remark 3.1. If m = n = 1, then the interpolation IL,N,m,nv corresponds to a new
interpolation IL,N,1,1v. By (3.14) and (3.16), for r ≥ 1, we get

||∂k
x(IL,N,1,1v − v)||χ(−1+k,−1+k) ≤ cNk−r||∂r

xv||χ(−1+r,−1+r) , k = 0, 1.

The interpolation IL,N,1,1v is different from the standard Jacobi-Gauss-Labatto
interpolation IL,Nv developed in [21]. Moreover, it was only shown in Theorem
4.10 of [21] that ||∂k

x(IL,Nv − v)|| ≤ cN2k−r||∂r
xv||χ(−1+r,−1+r) for k = 0, 1.

Remark 3.2. If m = n ≥ 1, then IL,N,m,mv is equivalent to the generalized

Legendre-Gauss-Labatto polynomial interpolation kmN v for v ∈ C
max(m−1,n−1)
m,n (Λ̄),

given by (13.17) of [3], since both of IL,N,m,nv and kmN v are polynomials of degree
N , possess the same interpolation nodes and satisfy (3.12). The results (3.14) and
(3.16) with m = n = 1, r ≥ 1 and k = 1, was first given in [27]. On the other hand,
Bernardi and Mady showed earlier that ||k1Nv−v||χ(−1,−1) ≤ cN−r||v||Hr(Λ), r ≥ 1;
see (13.26) of [3]. Thus, (3.14) and (3.16) generalize and improve the corresponding
results of [3, 27].

Remark 3.3. If (3.14) or (3.16) holds, then ||∂m
x (IL,N,m,mv)|| ≤ c||∂m

x v||. Thus, the
interpolation IL,N,m,mv is stable in Hm

m,m,A(Λ)!. The result with m = 1 was given

in [3].
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4. Laguerre quasi-orthogonal approximation

4.1. Generalized Laguerre functions with arbitrary real parameter α. Let
Λ = {x | 0 < x < ∞} and χ(x) be a weight function. For integer r ≥ 0, we define
the weighted Sobolev space Hr

χ(Λ) as usual, with the inner product (·, ·)r,χ, the
semi-norm | · |r,χ and the norm || · ||r,χ. The inner product and the norm of L2

χ(Λ)
are denoted by (·, ·)χ and ‖ · ‖χ, respectively. Furthermore,

0H
r
χ(Λ) = { v ∈ Hr

χ(Λ) | ∂k
xv(0) = 0, 0 ≤ k ≤ r − 1 }.

We omit the subscript χ whenever χ(x) ≡ 1.
The scaled generalized Laguerre polynomial of degree l ≥ 0 is defined by (cf.

[28])

L
(α,β)
l (x) =

1

l!
x−αeβx∂l

x(x
l+αe−βx), α > −1, β > 0.

They satisfy the following relations:

L
(α,β)
l (x) = L

(α+1,β)
l (x)− L

(α+1,β)
l−1 (x), l ≥ 1,(4.1)

∂xL
(α,β)
l (x) = −βL

(α+1,β)
l−1 (x), l ≥ 1,(4.2)

−x∂xL
(α,β)
l (x) = (l + α)L

(α,β)
l−1 (x)− lL

(α,β)
l (x), l ≥ 1.(4.3)

Let ωα,β(x) = xαe−βx. We have

(4.4)

∫
Λ

L
(α,β)
l (x)L

(α,β)
l′ (x)ωα,β(x)dx = γ

(α,β)
l δl,l′

where γ
(α,β)
l = Γ(l+α+1)

βα+1l! .

We now turn to the generalized Laguerre functions with arbitrary real parameter
α. Denote by [α] the largest integer ≤ α. Let l̄α = [−α] for α ≤ −1, and l̄α = 0 for
α > −1. Meanwhile, lα = l − [−α] for α ≤ −1, and lα = l for α > −1. The new
generalized Laguerre function of degree l is defined by

(4.5) L(α,β)
l (x) =

{
x−αL

(−α,β)
lα

(x), α ≤ −1, l ≥ l̄α = [−α],

L
(α,β)
l (x), α > −1, l ≥ l̄α = 0.

If α > −1 or α is a negative integer, then L(α,β)
l (x) turns out to be a polynomial

of degree l.

The function L(α,β)
l (x) is the lth eigenfunction of the following Sturm-Liouville

equation:

(4.6) ∂x(x
α+1e−βx∂xL(α,β)

l (x)) + λ
(α,β)
l xαe−βxL(α,β)

l (x) = 0, l ≥ l̄α

with

(4.7) λ
(α,β)
l =

{
β(lα − α) = β(l − [−α]− α), for α ≤ −1,
βlα = βl, for α > −1.

By virtue of (4.4), all L(α,β)
l (x) conform a complete L2

ωα,β
(Λ)-orthogonal system,

i.e.,

(4.8)

∫
Λ

L(α,β)
l (x)L(α,β)

l′ (x)ωα,β(x)dx = η
(α,β)
l δl,l′
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where

(4.9) η
(α,β)
l =

{
γ
(−α,β)
lα

= γ
(−α,β)
l−[−α] , for α ≤ −1, l ≥ lα,

γ
(α,β)
l , for α > −1, l ≥ 0.

Thus, for any v ∈ L2
ωα,β

(Λ), we have

(4.10) v(x) =

∞∑
l=l̄α

v̂
(α,β)
l L(α,β)

l (x)

with

(4.11) v̂
(α,β)
l =

1

η
(α,β)
l

∫
Λ

v(x)L(α,β)
l (x)ωα,β(x)dx.

Some important properties of L(α,β)
l (x) are stated in the following two proposi-

tions.

Proposition 4.1. We have

(4.12)

∫
Λ

∂xL(α,β)
l (x)∂xL(α,β)

l′ (x)ωα+1,β(x)dx = λ
(α,β)
l η

(α,β)
l δl,l′ , l, l′ ≥ l̄α.

Proof. We first consider α ≤ −1. In this case, lα = [−α]. By virtue of (4.5),

(4.13) xα+1∂xL(α,β)
l (x) = −αL

(−α,β)
lα

(x) + x∂xL
(−α,β)
lα

(x).

If l ≥ lα + 1, then lα ≥ 1. By using (4.3), we obtain from (4.13) that

xα+1∂xL(α,β)
l (x) = −αL

(−α,β)
lα

(x)− (lα − α)L
(−α,β)
lα−1 (x) + lαL

(−α,β)
lα

(x)

= (lα − α)(L
(−α,β)
lα

(x)− L
(−α,β)
lα−1 (x)).

The above with (4.1) leads to

(4.14) xα+1∂xL(α,β)
l (x) = (lα − α)L

(−α−1,β)
lα

(x).

If l = lα, then lα = 0. Accordingly, (4.13) leads to

xα+1∂xL(α,β)
l (x) = −αL

(−α,β)
0 (x) + x∂xL

(−α,β)
0 (x) = −α.

Thus (4.14) is also valid. Further, by (2.2) of [22],

(4.15) L
(−α−1,β)
lα

(0) =
Γ(lα − α)

Γ(−α)Γ(lα + 1)
=

Γ(l − [−α]− α)

Γ(−α)Γ(l− [−α] + 1)
, lα ≥ 0.

Moreover, for any v ∈ L2
ωα,β

(Λ), we have v = o(x−α+1
2 ) as x → 0. This fact, along

with (4.14) and (4.15), implies that for l ≥ lα, we have x
α+1e−βx∂xL(α,β)

l (x)L(α,β)
l′ (x)

→ 0 as x → 0. On the other hand, for any v ∈ L2
ωα,β

(Λ), we have v = o(x−α+1
2 e

1
2βx)

as x → ∞. As a result, xα+1e−βx∂xL(α,β)
l (x)L(α,β)

l′ (x) also tends to zero as x → ∞.

Therefore, by multiplying both sides of (4.6) by L(α,β)
l′ (x) and integrating the re-

sulting equation by parts, we use (4.8) to obtain (4.12) with α ≤ −1.

Next, we consider α > −1. Thanks to (4.5) and (4.2), we have xα+1∂xL(α,β)
l (x) =

−βxα+1L
(α+1,β)
l−1 (x) for all for l ≥ 1. In this case, xα+1e−βx∂xL(α,β)

l (x)L(α,β)
l′ (x)

→ 0 as x → 0,∞. Then, by the same argument as in the last part, we reach the
desired result (4.12) with l, l′ ≥ 1. Clearly, due to (4.7) with α > −1, (4.12) is also
valid for l, l′ = 0. �
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Proposition 4.2. If α = −1 or α ≤ −2, then

(4.16) ∂xL(α,β)
l (x) = (l − [−α]− α)L(α+1,β)

l−1 (x), l ≥ lα.

Proof. We have from (4.14) that for α ≤ −1,

(4.17) ∂xL(α,β)
l (x) = (lα − α)x−α−1L

(−α−1,β)
l−[−α] (x), l ≥ lα.

If α ≤ −2, then by using (4.5), we obtain from (4.17) that

∂xL(α,β)
l (x) = (lα − α)L(α+1,β)

l−1 (x) = (l − [−α]− α)L(α+1,β)
l−1 (x), l ≥ lα.

If α = −1, then lα = l − 1, lα − α = l and L
(−α−1,β)
lα

(x) = L
(0,β)
l−1 (x). Thereby, we

have from (4.17) and (4.5) that ∂xL(−1,β)
l (x) = lL

(0,β)
l−1 (x) = lL(0,β)

l−1 (x). This is the
desired result (4.16) with α = −1. The proof is completed. �

4.2. Orthogonal approximation with arbitrary real parameter α. Let

Q
(α,β)
N (Λ) = span{L(α,β)

l (x), l̄α ≤ l ≤ N}.

The orthogonal projection PN,α,β : L2
ωα,β

(Λ) → Q
(α,β)
N (Λ) is defined by

(PN,α,βv − v, φ)ωα,β
= 0, ∀φ ∈ Q

(α,β)
N (Λ).

For estimation of approximation error, we introduce the Sturm-Liouville operator
as

Aα,βv(x) = −x−αeβx∂x(x
α+1e−βx∂xv(x)).

Evidently, by (4.6),

(4.18) Aα,βL(α,β)
l (x) = λ

(α,β)
l L(α,β)

l (x), l ≥ l̄α.

Moreover, an argument similar to Proposition 4.1, shows that for any v ∈ L2
ωα,β

(Λ),

(4.19) xα+1e−βxv(x)∂xL(α,β)
l (x) → 0, as x → 0,∞.

Therefore, by (4.18) and integration by parts, we obtain
(4.20)

(v,L(α,β)
l )ωα,β

= (λ
(α,β)
l )−1(v,Aα,βL(α,β)

l )ωα,β
= (λ

(α,β)
l )−1(Aα,βv,L(α,β)

l )ωα,β
.

Therefore, if u, v are in the domain of the operator Aα,β , then (Aα,βu, v)ωα,β
=

(u,Aα,βv)ωα,β
. Accordingly, Aα,β is a positive definite and self-conjugate operator.

Thus, we could define the following Sobolev-type spaces with integer r ≥ 0,

D(Ar
α,β) = {v | Ak

α,βv ∈ L2
ωα,β

(Λ), 0 ≤ k ≤ r},

D(Ar+ 1
2

α,β ) = {v | v ∈ D(Ar
α,β) and ∂xAr

α,βv ∈ L2
ωα+1,β

(Λ)},
equipped with the following semi-norms and norms,

|v|D(Ar
α,β)

= ‖Ar
α,βv‖ωα,β

, |v|
D(A

r+1
2

α,β )
= ‖∂xAr

α,βv‖ωα+1,β
,

||v||D(Ar
α,β)

= (
r∑

k=0

|v|2D(Ak
α,β)

)
1
2 , ||v||

D(Ar+1/2
α,β )

= (||v||2D(Ar
α,β)

+ |v|2
D(Ar+1/2

α,β )
)

1
2 .

Theorem 4.1. For any v ∈ D(A
r
2

α,β) and integers 0 ≤ μ ≤ r ≤ N + 1,

|PN,α,βv − v|
D(A

μ
2
α,β)

≤ c(βN)
μ−r
2 |v|

D(A
r
2
α,β)

.
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Proof. We first consider even integers μ. In this case, we use (4.10), (4.18), (4.8)
and (4.11) successively to obtain

(4.21) |PN,α,βv − v|2
D(A

μ
2
α,β)

=

∞∑
l=N+1

(λ
(α,β)
l )μ(η

(α,β)
l )−1(v,L(α,β)

l )
2

ωα,β
.

For even integer r = 2q, we use (4.18) and (4.20) to obtain

(4.22) (v,L(α,β)
l )ωα,β

= (λ
(α,β)
l )−q(Aq

α,βv,L
(α,β)
l )ωα,β

.

A combination of the above two equalities with (4.7) yields

|PN,α,βv − v|2
D(A

μ
2
α,β)

≤ c(λ
(α,β)
N+1 )

μ−2q
∞∑

l=N+1

(η
(α,β)
l )−1(Aq

α,βv,L
(α,β)
l )

2

ωα,β

≤ c(βN)μ−r
∞∑

l=l̄α

(η
(α,β)
l )−1(Aq

α,βv,L
(α,β)
l )

2

ωα,β
.

Furthermore, thanks to (4.8), (4.10) and (4.11), we have

‖Aq
α,βv‖2ωα,β

=
∞∑

l=l̄α

(η
(α,β)
l )−1(Aq

α,βv,L
(α,β)
l )

2

ωα,β
.

Therefore,

|PN,α,βv − v|2
D(A

μ
2
α,β)

≤ c(βN)μ−r‖Aq
α,βv‖2ωα,β

= c(βN)μ−r|v|2
D(A

r
2
α,β)

.

Next, we consider odd integer r = 2q + 1. By (4.6), (4.19) and integration by
parts, we obtain from (4.22) that

(v,L(α,β)
l )ωα,β

= (λ
(α,β)
l )−q−1(∂xAq

α,βv, ∂xL
(α,β)
l )ωα+1,β

.

Accordingly, we use (4.10)-(4.12) and (4.18) successively to verify that

|PN,α,βv − v|2
D(A

μ
2
α,β)

=
∞∑

l=N+1

(λ
(α,β)
l )μ(η

(α,β)
l )−1(v,L(α,β)

l )
2

ωα,β

≤ c(λ
(α,β)
N+1 )

μ−2q−1
∞∑

l=N+1

(λ
(α,β)
l )−1(η

(α,β)
l )−1(∂xAq

α,βv, ∂xL
(α,β)
l )ωα+1,β

≤ c(βN)μ−r‖∂xAq
α,βv‖ωα+1,β

= c(βN)μ−r|v|2
D(A

r
2
α,β)

.

We can deal with the case with odd integer μ in the same manner as before. �

4.3. Laguerre orthogonal approximation with negative integer α = −m.

In the sequel, we assume integer m ≥ 1. Clearly, L(−m,β)
l (x) = xmL

(m, β)
l−m (x),

l ≥ m, and

(4.23) ∂k
xL

(−m,β)
l (0) = 0, 0 ≤ k ≤ m− 1.

We shall show that for integers m ≥ 1 and k ≥ 0,

(4.24) ∂k
xL

(−m,β)
l (x) = Dm,β

k,l L(−m+k,β)
l−k (x), l ≥ max(m, k),

Licensed to Nanyang Technological University. Prepared on Fri Oct 19 01:33:58 EDT 2012 for download from IP 155.69.4.4.

License or copyright restrictions may apply to redistribution; see http://www.ams.org/journal-terms-of-use



QUASI-ORTHOGONAL APPROXIMATIONS AND INTERPOLATIONS 427

where Dm,β
0,l = 1 and

(4.25) Dm,β
k,l =

{ ∏k−1
j=0 (l − j), if 1 ≤ k ≤ m,

(−β)k−m
∏m−1

j=0 (l − j), if 1 ≤ m < k.

In fact, we could use (4.16) to obtain the result (4.24) with k ≤ m ≤ l inductively.
For m < k ≤ l, we use (4.16) and (4.2) repeatedly to deduce that

∂k
xL

(−m,β)
l (x) =

m−1∏
j=0

(l − j)∂k−m
x L(0,β)

l−m (x)

=
m−1∏
j=0

(l − j)∂k−m
x L

(0,β)
l−m (x) = (−β)k−m

m−1∏
j=0

(l − j)L
(−m+k,β)
l−k (x)

= (−β)k−m
m−1∏
j=0

(l − j)L(−m+k,β)
l−k (x).

A combination of (4.24) and (4.8) with α = −m leads to

(4.26)

∫
Λ

∂k
xL

(−m,β)
l (x)∂k

xL
(−m,β)
l′ (x)ω−m+k,β(x)dx = (Dm,β

k,l )2η
(−m+k,β)
l−k δl,l′ .

In the above equality, there exists the factor η
(−m+k,β)
l−k . We now estimate its upper

bound. Actually, by virtue of (4.9) with α = −m and (4.4),

(4.27) η
(−m,β)
l = γ

(m,β)
l−m =

l!

βm+1(l −m)!
, for l ≥ m.

Hence, using (4.4) again yields

(4.28) η
(−m+k,β)
l−k = γ

(m−k,β)
l−m =

(l − k)!

βm−k+1(l −m)!
, for m ≥ k + 1.

Similarly,

(4.29) η
(−m+k,β)
l−k = γ

(−m+k,β)
l−k =

(l −m)!

βk−m+1(l − k)!
, for m < k + 1.

Now, PN (Λ) stands for the set of all algebraic polynomials of degree at most N ,
and

Pm,0
N (Λ) = {φ ∈ PN (Λ) | ∂k

xφ(0) = 0, for 0 ≤ k ≤ m− 1}.
Obviously,

Q
(−m,β)
N (Λ) = span{L(−m,β)

m (x), L(−m,β)
m+1 (x), · · ·, L(−m,β)

N (x)} = Pm,0
N (Λ).

The following inverse inequality will be used in the next section.

Proposition 4.3. For any φ ∈ Q
(−m,β)
N (Λ) with m ≥ 1,

(4.30) ‖∂k
xφ‖ω−m+k,β

≤ c(βN)
k
2 ‖φ‖ω−m,β

.

Proof. We use (4.24) and (4.26) to obtain

(4.31) ‖∂k
xφ‖2ω−m+k,β

=

N∑
l=max(m,k)

(φ̂
(−m,β)
l )2(Dm,β

k,l )2η
(−m+k,β)
l−k .
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Let C
(m,β)
N,k = maxm≤l≤N

(Dm,β
k,l )2η

(−m+k,β)
l−k

η
(−m,β)
l

. We use (4.25), (4.28) and (4.39) to verify

that for large l,

Dm,β
k,l ∼ lk, if m ≥ k, Dm,β

k,l ∼ βk−mlm, if m < k,

while

η
(−m+k,β)
l−k ∼ lm−kβk−m−1, if m ≥ k, η

(−m+k,β)
l−k ∼ lk−mβm−k−1, if m < k.

Thereby,

(4.32) (Dm,β
k,l )2η

(−m+k,β)
l−k ≤ clk+mβk−m−1.

In addition, η
(−m,β)
l ∼ 1

βm+1
lm. Consequently, C

(m,β)
N,k ≤ c(βN)k. Finally, we

obtain from (4.31) that

‖∂k
xφ‖2ω−m+k,β

≤ C
(m,β)
N,k

N∑
l=max(m,k)

(φ̂
(−m,β)
l )2η

(−m,β)
l ≤ c(βN)k‖φ‖2ω−m,β

.

This ends the proof. �
We now state the main result of this subsection.

Theorem 4.2. If ∂k
xv ∈ L2

ω−m+k,β
(Λ), ∂r

xv ∈ L2
ω−m+r,β

(Λ), integers 1 ≤ m ≤
min(r,N), and 0 ≤ k ≤ r ≤ N + 1, then

(4.33) ‖∂k
x(PN,−m,βv − v)‖ω−m+k,β

≤ c(βN)
k−r
2 ‖∂r

xv‖ω−m+r,β
.

Proof. We use (4.10) and (4.24) to obtain

∂k
x(PN,−m,βv − v) = −

∞∑
l=N+1

Dm,β
k,l v̂

(−m,β)
l L(−m+k,β)

l−k (x).

This with (4.26) implies

‖∂k
x(PN,−m,βv − v)‖2ω−m+k,β

=
∞∑

l=N+1

(Dm,β
k,l )2η

(−m+k,β)
l−k (v̂

(−m,β)
l )2.

On the other hand, since Q
(−m,β)
N (Λ) = Pm,0

N (Λ), we use (4.26) to obtain

‖∂r
xv‖2ω−m+r,β

=

∞∑
l=r

(Dm,β
r,l )2η

(−m+r,β)
l−r (v̂

(−m,β)
l )2.

Let C
(m,β)
N,k,r = max

l>N

(Dm,β
k,l )2η

(−m+k,β)
l−k

(Dm,β
r,l )2η

(−m+r,β)
l−r

. Due to (4.32), we have C
(m,β)
N,k,r ≤ c(βN)k−r.

Accordingly, ‖∂k
x(PN,−m,βv − v)‖2ω−m+k,β

≤ c(βN)k−r‖∂r
xv‖2ω−m+r,β

. This ends the
proof. �

In numerical analysis, we need other orthogonal projections. For this purpose,
we introduce the following space with integer r ≥ 0,

Hr
ω−m,β ,A

(Λ) = {v| v is measurable on Λ and ‖v‖Hr
ω−m,β,A<∞},

equipped with the semi-norm and the norm as

|v|Hr
ω−m,β,A

= ‖∂r
xv‖ω−m+r,β

, ‖v‖Hr
ω−m,β,A

= (
r∑

k=0

‖∂k
xv‖2ω−m+k,β

)
1
2 .
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Moreover, for 1 ≤ m ≤ r,

0H
r
ω−m,β ,A

(Λ) = {v | v ∈ Hr
ω−m,β ,A

(Λ) and ∂k
xv(0) = 0, for 0 ≤ k ≤ r − 1},

Br
m,β(Λ) = 0H

m
ω−m,β ,A

(Λ) ∩Hr
ω−m,β ,A

(Λ).

For integers m ≥ 1, the projection 0P
m
N,−m,β : Bm

m,β(Λ) → Q
(−m,β)
N (Λ) is defined

by

(4.34) (∂m
x (v − 0P

m
N,−m,βv), ∂m

x φ)ω0,β
= 0, ∀ φ ∈ Q

(−m,β)
N (Λ).

There is a close relation between 0P
m
N,−m,βv and PN,−m,βv. To shows this, we

assume v ∈ Bm
m,β(Λ), and

0P
m
N,−m,βv(x) =

N∑
l=m

a
(−m,β)
l L(−m,β)

l (x).

Thanks to (4.24), we have

∂m
x (v − 0P

m
N,−m,βv) =

N∑
l=m

Dm,β
m,l (v̂

(−m,β)
l − a

(−m,β)
l )L(0,β)

l−m (x)

+

∞∑
l=N+1

Dm,β
m,l v̂

(−m,β)
l L(0,β)

l−m (x).

Inserting the above equality into (4.24) with φ = L(−m,β)
l′ (x), m ≤ l′ ≤ N , we use

(4.24) and (4.26) to obtain

(Dm,β
m,l )

2η
(0,β)
l−m (v̂

(−m,β)
l − a

(−m,β)
l )2 = 0, ∀ m ≤ l ≤ N.

This means 0P
m
N,−m,βv(x) = PN,−m,βv(x) for v ∈ Bm

m,β(Λ).

The above matter with (4.33) leads to the following conclusion.

Theorem 4.3. If v ∈ Bm
m,β(Λ), ∂r

xv ∈ L2
ω−m+r,β

(Λ), integers 1 ≤ m ≤ min(r,N),
0 ≤ k ≤ r ≤ N + 1 and k ≤ m, then

(4.35) ‖∂k
x(0P

m
N,−m,βv − v)‖ω−m+k,β

≤ c(βN)
k−r
2 ‖∂r

xv‖ω−m+r,β
.

Remark 4.1. The above result is available for high order problems. But, the releted
earlier results are only applicable to second or fourth order problems; see [3, 6, 10,
17, 28]. It also improves the existing results essentially. For example, the estimate
(4.35) with μ = m = 1 and k = 0 implies the optimal error estimate, namely,

‖0P 1
N,−1,βv − v‖ω−1,β

≤ c(βN)
−r
2 ‖∂r

xv‖ω−1+r,β
. However, it was only shown before

that (cf. Theorem 2.3 of [28]) ‖0P 1
N,α,βv − v‖ωα,β

≤ c(βN)
1−r
2 ‖∂r

xv‖ωα−1+r,β
for

|α| < 1. Indeed, how to derive the above optimal error estimate had been an open
problem for several decades.

Remark 4.2. Everitt, Littlejohn and Wellman [9] also considered the case with
integer α ≤ −1, without error estimate.
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4.4. Laguerre quasi-orthogonal approximation. We set

(4.36) vb,m(x) =
m−1∑
j=0

∂j
xv(0)

xj

j!
.

For any v ∈ Hm
ω−m,β ,A

(Λ), we set ṽ(x) = v(x)− vb,m(x). Since ṽ(x) ∈ Bm
m,β(Λ), we

define the Laguerre quasi-orthogonal projection as

(4.37) Pm
N,−m,βv(x) = 0P

m
N,−m,β ṽ(x) + vb,m(x) ∈ PN (Λ).

Obviously, ∂k
xP

m
N,−m,βv(0) = ∂k

xv(0) for 0 ≤ k ≤ m − 1. Moreover, Pm
N,−m,βv(x) −

v(x) = 0PN,−m,β ṽ(x)− ṽ(x), and ∂r
xvb,m(x) = 0 for r ≥ m. Thus, we use (4.35) to

derive the following result.

Theorem 4.4. If v ∈ Hm
ω−m,β ,A

(Λ), ∂r
xv ∈ L2

ω−m+r,β
(Λ), integers 1 ≤ m ≤

min(r,N), 0 ≤ k ≤ r ≤ N + 1 and k ≤ m, then

(4.38) ‖∂k
x(P

m
N,−m,βv − v)‖ω−m+k,β

≤ c(βN)
k−r
2 ‖∂r

xv‖ω−m+r,β
.

5. Generalized Laguerre-Gauss-Radau interpolation

In this section, we investigate the generalized Laguerre-Gauss-Radau interpola-
tion.

For α > −1 and β > 0, we denote by ξ
(α,β)
G,N,j(0 ≤ j ≤ N) the zeros of the polyno-

mial L
(α,β)
N+1 (x), which are arranged in ascending order. Meanwhile, ω

(α,β)
G,N,j(0 ≤ j ≤

N) stand for the corresponding Christoffel numbers such that

(5.1)

∫
Λ

φ(x)ωα,β(x)dx =
N∑
j=0

φ(ξ
(α,β)
G,N,j)ω

(α,β)
G,N,j , ∀φ ∈ P2N+1(Λ).

We know from (2.10) of [22] that

(5.2) ω
(α,β)
G,N,j =

Γ(N + α+ 2)

βαΓ(N + 2)
· 1

ξ
(α,β)
G,N,j [∂xL

(α,β)
N+1 (ξ

(α,β)
G,N,j)]

2
, 0 ≤ j ≤ N.

Let ξ
(α,β)
G,N,−1 = 0. According to (2.15)–(2.19) of [22], there exists a certain fixed

number η > 0, and the constants c1 ∼ π2

2 and c2 ∼ 8, such that

• 2β
1
2 (ξ

(α,β)
G,N,j)

1
2 = 1√

N+1

(
jπ +O(1)

)
, for 0 < ξ

(α,β)
G,N,j ≤

η
β ,

• c1j
2

β(2N+α+3) < ξ
(α,β)
G,N,j <

c2j
2

β(2N+α+3) , for large j,

• ξ
(α,β)
G,N,N < 4β−1(N + 1),

• ω
(α,β)
G,N,j ∼ π√

βN
e−βξ

(α,β)
G,N,j (ξ

(α,β)
G,N,j)

α+ 1
2 , for 0 < ξ

(α,β)
G,N,j ≤

η
β ,

• ω
(α,β)
G,N,j ∼ ωα,β(ξ

(α,β)
G,N,j)(ξ

(α,β)
G,N,j − ξ

(α,β)
G,N,j−1), for 0 ≤ j ≤ N.

Now, let m ≥ 0, and

(5.3) ξ
(m,β)
N,j = ξ

(m,β)
G,N−m,j , ω

(m,β)
N,j = ω

(m,β)
G,N−m,j(ξ

(m,β)
G,N−m,j)

−2m, 0 ≤ j ≤ N −m.
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We set ξ
(m,β)
N,−1 = 0. Then the previous statements lead to the fact that

2β
1
2 (ξ

(m,β)
N,j )

1
2 =

1√
N −m+ 1

(jπ +O(1)), 0 < ξ
(m,β)
N,j ≤ η

β
,(5.4)

c1j
2

β(2N −m+ 3)
< ξ

(m,β)
N,j <

c2j
2

β(2N −m+ 3)
, for large j,(5.5)

ξ
(m,β)
N,N−m < 4β−1(N −m+ 1),(5.6)

ω
(m,β)
N,j ∼ π√

β(N −m)
e−βξ

(m,β)
N,j (ξ

(m,β)
N,j )−m+ 1

2 , 0 < ξ
(m,β)
N,j ≤ η

β
,(5.7)

ω
(m,β)
N,j ∼ ω−m,β(ξ

(m,β)
N,j )(ξ

(m,β)
N,j − ξ

(m,β)
N,j−1), 0 ≤ j ≤ N −m.(5.8)

Next, we introduce the discrete inner product and norm as follows:

(u, v)N,m,β =

N−m∑
j=0

u(ξ
(m,β)
N,j )v(ξ

(m,β)
N,j )ω

(m,β)
N,j , ‖u‖N,m,β = (u, u)

1
2

N,m,β .

We can use (5.1) to show that

(5.9) (φ, ψ)ω−m,β
= (φ, ψ)N,m,β , ∀φ ∈ Q

(−m,β)
N (Λ), ψ ∈ Q

(−m,β)
N+1 (Λ).

For any integer r ≥ 0, we denote by Cr(Λ) the space consisting of all r-times
differential functions. Further, for integer r ≥ m− 1,

Cr
0,m,β(Λ) = {v ∈ Cr(Λ)| ∂k

xv(0) = 0, 0 ≤ k ≤ m− 1}.

For any v ∈ Cm−1
0,m,β(Λ) and m ≥ 1, the auxiliary interpolation IN,−m,βv

∈ Q
(−m,β)
N (Λ) is determined uniquely by

IN,−m,βv(ξ
(m,β)
N,j ) = v(ξ

(m,β)
N,j ), 0 ≤ j ≤ N −m.

The following lemma describes the stability of interpolation IN,−m,βv.

Lemma 5.1. For any v ∈ Cm−1
0,m,β(Λ) ∩H1

ω−m,β ,A
(Λ) and integers 1 ≤ m ≤ N ,

(5.10) ‖IN,−m,βv‖ω−m,β
≤ c(||v||ω−m,β

+ β− 1
2 ((lnN)

1
2 +N− 1

2 )‖∂xv‖ω−m+1,β
).

Proof. Let ℵ′

j be the set of all j such that 0 < ξ
(m,β)
N,j ≤ η

β , while ℵ′′

j stands for the

set of all j such that ξ
(m,β)
N,j > η

β . By virtue of (5.9), we have

(5.11) ‖IN,−m,βv‖2ω−m,β
=

N−m∑
j=0

v2(ξ
(m,β)
N,j )ω

(m,β)
N,j = AN +BN

where

AN =
∑
j∈ℵ′

j

v2(ξ
(m,β)
N,j )ω

(m,β)
N,j , BN =

∑
j∈ℵ′′

j

v2(ξ
(m,β)
N,j )ω

(m,β)
N,j .

We first estimate AN . For simplicity of statements, let

Δ
(m,β)
j = [ξ

(m,β)
N,j−1, ξ

(m,β)
N,j ], |Δ(m,β)

j | = ξ
(m,β)
N,j − ξ

(m,β)
N,j−1,

δ
(m,β)
j,+ = (ξ

(m,β)
N,j )

1
2 + (ξ

(m,β)
N,j−1)

1
2 , δ

(m,β)
j,− = (ξ

(m,β)
N,j )

1
2 − (ξ

(m,β)
N,j−1)

1
2 .
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We use (3.9) and (5.7) to obtain

AN ≤ c√
β(N −m)

∑
j∈ℵ′

j

(ξ
(m,β)
N,j )

1
2 sup
x∈Δ

(m,β)
j

|x−mv2|

≤ c√
β(N −m)

∑
j∈ℵ′

j

((ξ
(m,β)
N,j )

1
2 (δ

(m,β)
j,+ )−1(δ

(m,β)
j,− )−1‖x−m

2 v(x)‖2
L2(Δ

(m,β)
j )

+ (ξ
(m,β)
N,j )

1
2 δ

(m,β)
j,+ δ

(m,β)
j,− (‖x−m

2 ∂xv‖2L2(Δ
(m,β)
j )

+ ‖x−m
2 −1v‖2

L2(Δ
(m,β)
j )

)).

We now estimate the upper-bound of the right side of the above inequality. By
(5.4),

(ξ
(m,β)
N,j )

1
2 δ

(m,β)
j,+ δ

(m,β)
j,− ‖x−m

2 −1v‖2
L2(Δ

(m,β)
j )

≤ (ξ
(m,β)
N,j )

1
2 [(ξ

(m,β)
N,j )

1
2 + (ξ

(m,β)
N,j−1)

1
2 ]2‖x−m

2 −1v‖2
L2(Δ

(m,β)
j )

≤ c(ξ
(m,β)
N,j )

3
2 (ξ

(m,β)
N,j−1)

−2‖x−m
2 v‖2

L2(Δ
(m,β)
j )

≤ c
√
β(N −m)‖x−m

2 v‖2
L2(Δ

(m,β)
j )

.

Similarly,

(ξ
(m,β)
N,j )

1
2 δ

(m,β)
j,+ δ

(m,β)
j,− ‖x−m

2 ∂xv‖2L2(Δ
(m,β)
j )

≤ c(ξ
(m,β)
N,j )

3
2 (ξ

(m,β)
N,j−1)

−1‖x−m
2 + 1

2 ∂xv‖2L2(Δ
(m,β)
j )

≤ c√
β(N −m)

‖x−m
2 + 1

2 ∂xv‖2L2(Δ
(m,β)
j )

.

Furthermore, we use (5.4) again to show that for 0 < ξ
(m,β)
N,j ≤ η

β ,

δ
(m,β)
j,− ∼ 1√

β(N −m)
, (ξ

(m,β)
N,j )

1
2 (δ

(m,β)
j,+ )−1 ≤ c.

Consequently,

(5.12)

AN ≤ c
∑
j∈ℵ′

j

(‖x−m
2 v‖2

L2(Δ
(m,β)
j )

+ β−1N−1‖x−m
2 + 1

2 ∂xv‖2L2(Δ
(m,β)
j )

)

≤ c(‖v‖2ω−m,β
+ β−1N−1||∂xv||2ω−m+1,β

).

Next, we estimate BN . Since v ∈ L2
ω−m,β

(Λ), we have that v2(x)x−m+1e−βx → 0
as x → 0. Thus,

v2(x)x−m+1e−βx =

∫ x

0

∂ξ(v
2(ξ)ξ−m+1e−βξ)dξ.

A direct calculation shows

v2(x)x−m+1e−βx + (m− 1)

∫ x

0

v2(ξ)ξ−me−βξdξ + β

∫ x

0

v2(ξ)ξ−m+1e−βξdξ

= 2

∫ x

0

v(ξ)∂ξv(ξ)ξ
−m+1e−βξdξ.

Thanks to m ≥ 1, we obtain

(5.13) v2(x)x−m+1e−βx ≤ 1

β
||∂xv||2ω−m+1,β

.
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Therefore, with the aid of (5.6), (5.8) and (5.13), we deduce that

(5.14)

BN ≤ c
∑
j∈ℵ′′

j

v2(ξ
(m,β)
N,j )ω−m,β(ξ

(m,β)
N,j )(ξ

(m,β)
N,j − ξ

(m,β)
N,j−1)

≤ c supx> η
β
|v2(x)ω−m+1,β(x)|

∑
j∈ℵ′′

j

1

ξ
(m,β)
N,j

(ξ
(m,β)
N,j − ξ

(m,β)
N,j−1)

≤ c supx> η
β
|v2(x)ω−m+1,β(x)|

∫ 4β−1(N−m+1)

ηβ−1

1

x
dx

≤ c

β
lnN‖∂xv‖2ω−m+1,β

.

Finally, the desired result follows from a combination of (5.11), (5.12) and (5.14).
�

We are now in position to estimate the error of interpolation IN,−m,βv.

Lemma 5.2. If v ∈ 0H
m
ω−m,β ,A

(Λ), ∂r
xv ∈ L2

ω−m+r,β
(Λ), integers 1 ≤ m ≤ min(r,N)

and 0 ≤ k ≤ r ≤ N + 1, then

(5.15)
‖∂k

x(IN,−m,βv − v)‖ω−m+k,β

≤ c(β− 1
2 + 1)(lnN)

1
2 (βN)

k+1−r
2 ||∂r

xv||ω−m+r,β
.

Proof. Clearly, IN,−m,βv is meaningful. Since IN,−m,βPN,−m,βv = PN,−m,βv, we
use (4.30), (5.10) and (4.33) successively to deduce that

‖∂k
x(PN,−m,βv − IN,−m,βv)‖ω−m+k,β

≤ c(βN)
k
2 ‖IN,−m,β(PN,−m,βv − v)‖ω−m,β

≤ c(βN)
k
2 (||PN,−m,βv − v||ω−m,β

+ β− 1
2 ((lnN)

1
2 +N− 1

2 )‖∂x(PN,−m,βv − v)‖ω−m+1,β
)

≤ c(β− 1
2 + 1)(lnN)

1
2 (βN)

k+1−r
2 ||∂r

xv||ω−m+r,β
.

Finally, we use (4.33) again to obtain

‖∂k
x(IN,−m,βv − v)‖ω−m+k,β

≤ ‖∂k
x(PN,−m,βv − v)‖ω−m+k,β

+ ‖∂k
x(PN,−m,βv − IN,−m,βv)‖ω−m+k,β

≤ c(β− 1
2 + 1)(lnN)

1
2 (βN)

k+1−r
2 ||∂r

xv||ω−m+r,β
.

This ends the proof. �

We are now in position to consider the generalized Laguerre-Gauss-Radau inter-
polation for functions with nonhomogenous boundary values. Let vb,m(x) be the

same as in (4.36). For any v ∈ Cm−1
m,β (Λ), we set ṽ(x) = v(x) − vb,m(x), Then

ṽ ∈ Cm−1
0,m,β(Λ). Thus, there exists the interpolation IN,−m,β ṽ ∈ Q

(−m,β)
N (Λ). Fur-

ther, we define the new interpolation as

IR,N,−m,βv(x) = IN,−m,β ṽ(x) + vb,m(x).

It can be checked that

(5.16)
IR,N,−m,βv(ξ

(m,β)
N,j ) = v(ξ

(m,β)
N,j ), 0 ≤ j ≤ N −m,

IR,N,−m,βv(0) = ∂k
xv(0), 0 ≤ k ≤ m− 1.
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This interpolation is the same as the generalized Laguerre-Gauss-Radau interpola-
tion, since both of them are polynomials of degree N , with the same interpolation
nodes, and satisfy the same condition (5.16).

Next, we estimate the error of interpolation IR,N,−m,βv. Clearly, IR,N,−m,βv(x)−
v(x) = IN,−m,β ṽ(x)− ṽ(x). This fact, along with (5.15), leads to the following con-
clusion.

Theorem 5.1. If v ∈ Hm
ω−m,β ,A

(Λ), ∂r
xv ∈ L2

ω−m+r,β
(Λ), integers 1 ≤ m ≤ min(r,N)

and 0 ≤ k ≤ r ≤ N + 1, then

(5.17) ‖∂k
x(IR,N,−m,βv−v)‖ω−m+k,β

≤ c(β− 1
2 +1)(lnN)

1
2 (βN)

k+1−r
2 ||∂r

xv||ω−m+r,β
.

Remark 5.1. The result (5.17) improves the existing results essentially. For in-
stance, (5.17) with m = 1 implies

‖∂k
x(IR,N,−1,βv − v)‖ω−1+k,β

≤ c(β− 1
2 + 1)(lnN)

1
2 (βN)

k+1−r
2 ||∂r

xv||ω−1+r,β
.

However, it was only shown before that (cf. (3.33) of [22]) for α > −1, 1 ≤ k ≤ r ≤
N + 1 and r > α+ 1 (or |α| < 1),

‖∂k
x(IR,N,α,βv − v)‖ωα,β

≤ c(βN)
2k+1−r

2 (β−1||∂r
xv||ω−1+r+α,β

+ β−1N− 1
2 ||∂r

xv||ω−k+r+α,β
+ (1 + β− 1

2 )(lnN)
1
2 ||∂r

xv||ωr+α,β
).

Finally, if v ∈ Hm
ω−m,β ,A

(Λ), ∂r
xv ∈ L2

ω−m+r,β
(Λ), integers 1 ≤ m ≤ min(r,N) and

r ≤ N + 1, then for any φ ∈ Q
(−m,β)
N (Λ),

(5.18)
|(v, φ)ω−m,β

− (v, φ)N,m,β |
≤ c(β− 1

2 + 1)(lnN)
1
2 (βN)

1−r
2 ||∂r

xv||ω−m+r,β
||φ||ω−m,β

.

Appendix

In this appendix, we prove the estimate (2.24). It suffices to verify that for
1 ≤ m,n ≤ 4 and max(m,n) ≤ r ≤ m+ n− 1,

(A.1) ||∂r
xvm,n,b||χ(−m+r,−n+r) ≤ c||∂r

xv||χ(−m+r,−n+r) .

We need some preparations. First, for any function w,

(A.2) b0(w) := −w(−1) + w(1) =

∫
Λ

∂xw(x)dx.

Next, by virtue of (A.2) and integration by parts, we get

(A.3)

b1(w) := w(−1)− w(1) + ∂xw(−1) + ∂xw(1) =

∫
Λ

x∂2
xw(x)dx

=
1

2

∫
Λ

(1− x2)∂3
xw(x)dx.

Furthermore, with the aid of (A.3), (A.2) and integration by parts, we obtain
that

(A.4)

b2(w) := 3(w(−1)− w(1) + ∂xw(−1) + ∂xw(1)) + ∂2
xw(−1)− ∂2

xw(1)

= 3b1(w)− b0(∂
2
xw) =

3

2

∫
Λ

(1− x2)∂3
xw(x)dx−

∫
Λ

∂3
xw(x)dx

=
1

2

∫
Λ

(1− 3x2)∂3
xw(x)dx = −1

2

∫
Λ

x(1− x2)∂4
xw(x)dx

= −1

8

∫
Λ

(1− x2)2∂5
xw(x)dx.

Licensed to Nanyang Technological University. Prepared on Fri Oct 19 01:33:58 EDT 2012 for download from IP 155.69.4.4.

License or copyright restrictions may apply to redistribution; see http://www.ams.org/journal-terms-of-use
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Finally, using (A.4), (A.3) and integration by parts, we deduce that

(A.5)

b3(w) := 15(w(−1)− w(1) + ∂xw(−1) + ∂xw(1))
+ 6(∂2

xw(−1)− ∂2
xw(1)) + ∂3

xw(−1) + ∂3
xw(1)

= 5b2(w) + b1(∂
2
xw)= −5

8

∫
Λ

(1− x2)2∂5
xw(x)dx

+
1

2

∫
Λ

(1− x2)∂5
xw(x)dx

=
1

8

∫
Λ

(−1 + 6x2 − 5x4)∂5
xw(x)dx

=
1

8

∫
Λ

x(1− x2)2∂6
xw(x)dx =

1

48

∫
Λ

(1− x2)3∂7
xw(x)dx.

We now consider (A.1) with m = n = 1. By (2.17), we have (also see [27])

v1,1,b(x) =
1

2
(v(−1)(1− x) + v(1)(1 + x)).

Obviously, ∂xv1,1,b(x) =
1
2b0(v). Thus, we use (A.2) and the Cauchy inequality to

obtain
||∂xv1,1,b|| ≤ |b0(v)| ≤ c||∂xv||.

This is the desired result (A.1) with m = n = 1 and r = 1.
Next, we consider the case with m = n = 2. By (2.17), we have

v2,2,b(x) =
1

4
(v(−1)(x3 − 3x+ 2) + v(1)(−x3 + 3x+ 2)

+ ∂xv(−1)(x3 − x2 − x+ 1) + ∂xv(1)(x
3 + x2 − x− 1)).

A calculation shows ∂3
xv2,2,b(x) =

3

2
b1(v). Consequently, we use (A.3) to obtain

(A.6) ||∂3
xv2,2,b||χ(1,1) ≤ c|b1(v)| ≤ c||∂3

xv||χ(1,1) .

This is the result (A.1) with m = n = 2 and r = 3. Furthermore,

∂2
xv2,2,b(x) =

3

2
xb1(v) +

1

2
b0(∂xv).

Thereby, we use the first equality of (A.3) and (A.2) to obtain

||∂2
xv2,2,b|| ≤ 3|b1(v)|+ |b0(∂xv)| ≤ c||∂2

xv||.
This is the result (A.1) with m = n = 2 and r = 2.

Third, we deal with the case with m = n = 3. A calculation shows

v3,3,b(x) =
1

16
(v(−1)(−3x5 + 10x3 − 15x+ 8) + v(1)(3x5 − 10x3 + 15x+ 8)

+ ∂xv(−1)(−3x5 + x4 + 10x3 − 6x2 − 7x+ 5)

+ ∂xv(1)(−3x5 − x4 + 10x3 + 6x2 − 7x− 5)

+ ∂2
xv(−1)(−x5 + x4 + 2x3 − 2x2 − x+ 1)

+ ∂2
xv(1)(x

5 + x4 − 2x3 − 2x2 + x+ 1)).

It can be checked that ∂5
xv3,3,b(x) = −15

2
b2(v). Then, an argument as in the deriva-

tion of (A.6), along with (A.4), leads to ||∂5
xv3,3,b||χ(2,2) ≤ c||∂5

xv||χ(2,2) . Moreover,

∂4
xv3,3,b(x) = −15

2
xb2(v) +

3

2
b1(∂xv).
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Thereby, we use the fourth equality of (A.4) and (A.3) to obtain ||∂4
xv3,3,b||χ(1,1) ≤

c||∂4
xv||χ(1,1) . Furthermore,

∂3
xv3,3,b(x) = −15

4
x2b2(v) +

3

2
xb1(∂xv) +

3

4
b2(v) +

3

2
b1(v).

We can use the second equality of (A.4) and the first two equalities of (A.3) to
estimate the upper-bounds of |b2(v)|, |b1(∂xv)| and |b1(v)|, respectively. Finally,
||∂3

xv3,3,b|| ≤ c||∂3
xv||. The previous three estimates imply (A.1) with m = n = 3

and r = 5, 4, 3.
We now turn to the case with m = n = 4. We have

v4,4,b(x) =
1

32
(v(−1)(5x7 − 21x5 + 35x3 − 35x+ 16)

+ v(1)(−5x7 + 21x5 − 35x3 + 35x+ 16)

+ ∂xv(−1)(5x7 − x6 − 21x5 + 5x4 + 35x3 − 15x2 − 19x+ 11)

+ ∂xv(1)(5x
7 + x6 − 21x5 − 5x4 + 35x3 + 15x2 − 19x− 11)

+ ∂2
xv(−1)(2x7 − x6 − 8x5 + 5x4 + 10x3 − 7x2 − 4x+ 3)

+ ∂2
xv(1)(−2x7 − x6 + 8x5 + 5x4 − 10x3 − 7x2 + 4x+ 3))

+
1

96
(∂3

xv(−1)(x7 − x6 − 3x5 + 3x4 + 3x3 − 3x2 − x+ 1)

+ ∂3
xv(1)(x

7 + x6 − 3x5 − 3x4 + 3x3 + 3x2 − x− 1)).

It can be checked that ∂7
xv4,4,b(x)=

105
2 b3(v). This with (A.5) leads to ||∂7

xv4,4,b||χ(3,3)

≤ c||∂7
xv||χ(3,3) . Next, ∂6

xv4,4,b(x) =
15
2 (7xb3(v) − b2(∂xv)). Hence, we use the fifth

equality of (A.5) and (A.4) to verify that ||∂6
xv4,4,b||χ(2,2) ≤ c||∂6

xv||χ(2,2) . Further-
more,

∂5
xv4,4,b(x) =

15

4
(7x2b3(v)− 2xb2(∂xv)− 7b2(v)− b1(∂

2
xv)).

Thus, we could use the third equality of (A.5), the last two equalities of (A.4)
and (A.3) to estimate the upper-bounds of the terms |b3(v)|, |b2(∂xv)|, |b2(v)| and
|b1(∂2

xv)|, respectively. As a result, we obtain ||∂5
xv4,4,b||χ(1,1) ≤ c||∂5

xv||χ(1,1) . Fur-
thermore,

∂4
xv4,4,b(x) =

35

4
x3b3(v)−

15

4
x2b2(∂xv)−

15

4
xb3(v)−

15

2
xb2(v)+

3

4
b2(∂xv)+

3

2
b1(∂xv).

We can estimate |b2(∂xv)|, |b2(v)| and |b1(∂xv)|, by using the fourth equality of
(A.4), the fifth equality of (A.4) and (A.3), respectively. On the other hand, ac-
cording to (A.5), the fifth equality of (A.4) and the first equality of (A.3), we have

|b3(v)| = |5b2(v) + b1(∂
2
xv)| = | − 5

2

∫
Λ

x(1− x2)∂4
xv(x)dx+

∫
Λ

x∂4
xv(x)dx|

≤ c||∂4
xv||.

Finally, we conclude that ||∂4
xv4,4,b|| ≤ c||∂4

xv||. The previous statements imply (A.1)
with m = n = 4 and r = 7, 6, 5, 4.

We now consider the cases with m �= n. First, let m = 1 and n = 2. We have

v1,2,b(x) =
1

4
(v(−1)(−x2 − 2x+ 3) + v(1)(x2 + 2x+ 1) + 2∂xv(−1)(1− x2)).
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A calculation, along with (A.2) and the second equality of (A.3), shows that

∂2
xv1,2,b(x) = −1

2
(b1(v)− b0(∂xv)) =

1

2

∫
Λ

(1− x)∂2
xv(x)dx.

Accordingly, ||∂2
xv1,2,b||χ(1,0) ≤ c||∂2

xv||χ(1,0) . This is (A.1) with m = 1, n = 2 and

r = 2. In the same manner, we verify that ||∂2
xv2,1,b||χ(0,1) ≤ c||∂2

xv||χ(0,1) , which is
(A.1) with m = 2, n = 1 and r = 2.

Next, we consider the case with m = 1 and n = 3. We have

v1,3,b(x) =
1

8
(v(−1)(−x3 − 3x2 − 3x+ 7) + v(1)(x3 + 3x2 + 3x+ 1))

+
1

4
(∂xv(−1)(−x3 − 3x2 + x+ 3) + ∂2

xv(−1)(−x3 − x2 + x+ 1)).

A calculation with the last two equalities of (A.3) and (A.2), yields

∂3
xv1,3,b(x) = −3

4
(b1(v) + b1(∂xv)− b0(∂

2
xv)) =

3

8

∫
Λ

(1− x)2∂3
xv(x)dx.

This leads to ||∂3
xv1,3,b||χ(2,0) ≤ c||∂3

xv||χ(2,0) . Similarly, ||∂3
xv3,1,b||χ(0,2) ≤ c||∂3

xv||χ(0,2)

for m = 3 and n = 1. The above two inequalities imply the validity of (A.1) for
m = 1, n = 3 and m = 3, n = 1.

Third, we consider the case with m = 1 and n = 4. We have

v1,4,b(x)=
1

16
(v(−1)(−x4 − 4x3 − 6x2 − 4x+ 15)+v(1)(x4 + 4x3 + 6x2 + 4x+ 1))

+
1

8
(∂xv(−1)(−x4 − 4x3 − 6x2 + 4x+ 7)+∂2

xv(−1)(−x4 − 4x3 − 2x2 + 4x+ 3))

+
1

12
∂3
xv(−1)(−x4 − 2x3 + 2x+ 1).

A calculation, along with the fifth equality of (A.4), the last two equalities of (A.3)
and (A.2), gives

∂4
xv1,4,b(x)=−1

2
(b2(v) + 3b1(∂xv)+b1(∂

2
xv)− 2b0(∂

3
xv))=

1

4

∫
Λ

(1− x)3∂4
xv(x)dx.

Therefore, ||∂4
xv1,4,b||χ(3,0) ≤ c||∂4

xv||χ(3,0) . Similarly, ||∂4
xv4,1,b||χ(0,3) ≤ c||∂4

xv||χ(0,3)

for m = 4 and n = 1.
Further, we deal with the case with m = 2 and n = 3. A direct calculation yields

v2,3,b(x) =
1

16
(v(−1)(3x4 + 4x3 − 6x2 − 12x+ 11)

+ v(1)(−3x4 − 4x3 + 6x2 + 12x+ 5))

+
1

4
∂xv(−1)(x4 + x3 − 3x2 − x+ 2) +

1

8
∂xv(1)(x

4 + 2x3 − 2x− 1)

+
1

8
∂2
xv(−1)(x4 − 2x2 + 1).

Using the fifth equality of (A.4) and the last equality of (A.3), we verify that

∂4
xv2,3,b(x) =

3

2
(b2(v) + b1(∂xv)) =

1

2

∫
Λ

(1 + x)(1− x)2∂4
xv(x)dx.
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Thus, ||∂4
xv2,3,b||χ(2,1) ≤ c||∂4

xv||χ(2,1) . On the other hand, with the aid of the fourth
equality of (A.4) and the last two equalities of (A.3), we obtain

∂3
xv2,3,b(x) =

3

2
((b2(v) + b1(∂xv))x+ b1(v))

=
3

4
x

∫
Λ

(1− x)(1 + 3x)∂3
xv(x)dx+

3

4

∫
Λ

(1− x2)∂3
xv(x)dx.

This leads to ||∂3
xv2,3,b||χ(1,0) ≤ c||∂3

xv||χ(1,0) . The above two results imply (A.1) with
m = 2, n = 3 and r = 4, 3. Similarly, ||∂r

xv3,2,b||χ(−3+r,−2+r) ≤ c||∂r
xv||χ(−3+r,−2+r)

for m = 3, n = 2 and r = 4, 3.
We now turn to the case with m = 2 and n = 4. A direct calculation yields

v2,4,b(x) =
1

16
(v(−1)(2x5 + 5x4 − 10x2 − 10x+ 13)

+ v(1)(−2x5 − 5x4 + 10x2 + 10x+ 3)

+ ∂xv(−1)(3x5 + 7x4 − 2x3 − 18x2 − x+ 11)

+ ∂xv(1)(x
5 + 3x4 + 2x3 − 2x2 − 3x− 1))

+
1

8
∂2
xv(−1)(x5 + 2x4 − 2x3 − 4x2 + x+ 2)

+
1

24
∂3
xv(−1)(x5 + x4 − 2x3 − 2x2 + x+ 1).

By using the last two equalities of (A.4) and (A.3), we derive that

∂5
xv2,4,b(x) =

5

2
(2b2(v) + b2(∂xv) + b1(∂

2
xv)) =

5

8

∫
Λ

(1 + x)(1− x)3∂5
xv(x)dx,

which implies ||∂5
xv2,4,b||χ(3,1) ≤ c||∂5

xv||χ(3,1) . Also, we have

∂4
xv2,4,b(x) =

5

2
(2b2(v) + b2(∂xv) + b1(∂

2
xv))x+

1

2
(b3(v) + 2b2(∂xv) + b0(∂

3
xv)).

Moreover, by virtue of the fourth and fifth equalities of (A.4) and the second equality
of (A.3), we observe that

2b2(v) + b2(∂xv) + b1(∂
2
xv) =

1

2

∫
Λ

(1− x)2(1 + 2x)∂4
xv(x)dx.

On the other hand, with the aid of the fourth equality of (A.5), the fourth equality
of (A.4) and integration by parts, we deduce that

b3(v) + 2b2(∂xv) + b0(∂
3
xv) =

1

2

∫
Λ

(1− x)2(4 + 5x)∂4
xv(x)dx.

Thus, ||∂4
xv2,4,b||χ(2,0) ≤ c||∂4

xv||χ(2,0) . The above two results imply (A.4) with m =
2, n = 4 and r = 5, 4. Similarly, ||∂r

xv4,2,b||χ(−4+r,−2+r) ≤ c||∂r
xv||χ(−4+r,−2+r) for

m = 4, n = 2 and r = 5, 4.
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Finally, we deal with the case with m = 3 and n = 4. A direct calculation yields

v3,4,b(x) =
1

32
(v(−1)(−5x6 − 6x5 + 15x4 + 20x3 − 15x2 − 30x+ 21)

+ v(1)(5x6 + 6x5 − 15x4 − 20x3 + 15x2 + 30x+ 11))

+
1

16
(∂xv(−1)(−3x6 − 3x5 + 10x4 + 10x3 − 15x2 − 7x+ 8)

+ ∂xv(1)(−2x6 − 3x5 + 5x4 + 10x3 − 7x− 3))

+
1

32
(∂2

xv(−1)(−3x6 − 2x5 + 11x4 + 4x3 − 13x2 − 2x+ 5)

+ ∂2
xv(1)(x

6 + 2x5 − x4 − 4x3 − x2 + 2x+ 1))

+
1

48
∂3
xv(−1)(−x6 + 3x4 − 3x2 + 1).

This, along with the fifth equality of (A.5) and the last equality of (A.4), leads to

∂6
xv3,4,b(x) = −15

2
(b3(v) + b2(∂xv)) =

15

16

∫
Λ

(1 + x)2(1− x)3∂6
xv(x)dx.

Therefore, ||∂6
xv3,4,b||χ(3,2) ≤ c||∂6

xv||χ(3,2) . Next, we use the fourth equality of (A.5)
and the last two equalities of (A.4) to obtain

∂5
xv3,4,b(x) = −15

2
(b3(v) + b2(∂xv))x− 15

2
b2(v)

=
15

16
x

∫
Λ

(1− x)2(1 + x)(1 + 5x)∂5
xv(x)dx+

15

16

∫
Λ

(1− x2)2∂5
xv(x)dx.

Thereby, ||∂5
xv3,4,b||χ(2,1) ≤ c||∂5

xv||χ(2,1) . Furthermore,

∂4
xv3,4,b(x) = −15

4
(b3(v) + b2(∂xv))x

2 − 15

2
b2(v)x+

3

4
(b3(v) + b2(∂xv) + 2b1(∂xv)).

We can use the fifth equality of (A.4) to estimate |b2(v)| directly. Moreover, by
virtue of the fourth equality of (A.5), the fourth equality of (A.4) and integration
by parts, we observe that

b3(v) + b2(∂xv) =
1

8

∫
Λ

(−1 + 6x2 − 5x4)∂5
xv(x)dx+

1

2

∫
Λ

(1− 3x2)∂4
xv(x)dx

=
1

2

∫
Λ

(1− x)(1− 2x− 5x2)∂4
xv(x)dx.

The same procedure, coupled with the last equality of (A.3), gives

b3(v) + b2(∂xv) + 2b1(∂xv) =
1

2

∫
Λ

(1− x)(3− 5x2)∂4
xv(x)dx.

Consequently, ‖∂4
xv3,4,b‖χ(1,0) ≤ c‖∂4

xv‖χ(1,0) . The previous statements imply (A.1)
withm=3, n=4 and r=6, 5, 4. Similarly, ‖∂r

xv4,3,b‖χ(−4+r,−3+r) ≤c‖∂r
xv‖χ(−4+r,−3+r)

for m = 4, n = 3 and r = 6, 5, 4.
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