报 告 人:武婷婷 教授
报告题目:Blind Image Deconvolution: New Approaches
报告时间:2024年12月20日(周五)下午4:00
报告地点:静远楼203学术报告厅
主办单位:数学与统计学院、数学研究院、科学技术研究院
报告人简介:
武婷婷教授,博士生导师,曾获得江苏高校“青蓝工程”优秀青年骨干教师、江苏省“科技副总”、南京邮电大学1311人才计划“鼎新学者”等称号。目前是中国工业与应用数学学会会员、江苏省运筹学会会员、中国数学会会员,担任JMIV, JIMO等杂志及会议审稿人。主要从事优化算法及其在信息科学、统计等领域中的应用研究,目前发表国内外知名期刊论文65篇,研究成果发表于《SIAM Journal on Imaging Sciences》、《Journal of Scientific Computing》以及《IEEE Transactions on Neural Networks and Learning Systems》等国际权威期刊上。
报告摘要:
Blind image deblurring is challenging task in image restoration. In deblurring, accurate blur kernel estimation in the first stage is crucial, but errors often lead to artifacts. A robust model is proposed that decomposes the blur kernel into deterministic and random components, improving estimation through iterative refinement and utilizing the Lp-norm for better restoration. In addition, a fractional-order variational model is introduced to reduce ringing artifacts, while the Patch-wise Minimal Pixels prior distinguishes between clean and blurred image blocks. These approaches improves restoration quality and has proven convergence, demonstrating superior performance in blind image deblurring.